Files
swift-mirror/lib/ClangImporter/ImportName.cpp
Michael Ilseman ffadf0524b [ClangImporter] Refactor off class methods
Many of the Impl's methods are relevant to only one file or task. Make
more of them static, and when possible, move them off of the Impl
class.

NFC
2016-09-10 18:40:04 -07:00

1609 lines
57 KiB
C++

//===--- ImportName.cpp - Imported Swift names for Clang decls --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides class definitions for naming-related concerns in the
// ClangImporter.
//
//===----------------------------------------------------------------------===//
#include "IAMInference.h"
#include "ImporterImpl.h"
#include "ClangDiagnosticConsumer.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Types.h"
#include "swift/Basic/StringExtras.h"
#include "swift/ClangImporter/ClangImporterOptions.h"
#include "swift/Parse/Parser.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <memory>
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
/// Determine whether the given Clang selector matches the given
/// selector pieces.
static bool isNonNullarySelector(clang::Selector selector,
ArrayRef<StringRef> pieces) {
unsigned n = selector.getNumArgs();
if (n == 0) return false;
if (n != pieces.size()) return false;
for (unsigned i = 0; i != n; ++i) {
if (selector.getNameForSlot(i) != pieces[i]) return false;
}
return true;
}
/// Whether we should make a variadic method with the given selector
/// non-variadic.
static bool shouldMakeSelectorNonVariadic(clang::Selector selector) {
// This is UIActionSheet's designated initializer.
if (isNonNullarySelector(selector,
{ "initWithTitle",
"delegate",
"cancelButtonTitle",
"destructiveButtonTitle",
"otherButtonTitles" }))
return true;
// This is UIAlertView's designated initializer.
if (isNonNullarySelector(selector,
{ "initWithTitle",
"message",
"delegate",
"cancelButtonTitle",
"otherButtonTitles" }))
return true;
// Nothing else for now.
return false;
}
static bool isBlockParameter(const clang::ParmVarDecl *param) {
return param->getType()->isBlockPointerType();
}
static bool isErrorOutParameter(const clang::ParmVarDecl *param,
ForeignErrorConvention::IsOwned_t &isErrorOwned) {
clang::QualType type = param->getType();
// Must be a pointer.
auto ptrType = type->getAs<clang::PointerType>();
if (!ptrType) return false;
type = ptrType->getPointeeType();
// For NSError**, take ownership from the qualifier.
if (auto objcPtrType = type->getAs<clang::ObjCObjectPointerType>()) {
auto iface = objcPtrType->getInterfaceDecl();
if (iface && iface->getName() == "NSError") {
switch (type.getObjCLifetime()) {
case clang::Qualifiers::OCL_None:
llvm_unreachable("not in ARC?");
case clang::Qualifiers::OCL_ExplicitNone:
case clang::Qualifiers::OCL_Autoreleasing:
isErrorOwned = ForeignErrorConvention::IsNotOwned;
return true;
case clang::Qualifiers::OCL_Weak:
// We just don't know how to handle this.
return false;
case clang::Qualifiers::OCL_Strong:
isErrorOwned = ForeignErrorConvention::IsOwned;
return false;
}
llvm_unreachable("bad error ownership");
}
}
return false;
}
static bool isBoolType(clang::ASTContext &ctx, clang::QualType type) {
do {
// Check whether we have a typedef for "BOOL" or "Boolean".
if (auto typedefType = dyn_cast<clang::TypedefType>(type.getTypePtr())) {
auto typedefDecl = typedefType->getDecl();
if (typedefDecl->getName() == "BOOL" ||
typedefDecl->getName() == "Boolean")
return true;
type = typedefDecl->getUnderlyingType();
continue;
}
// Try to desugar one level...
clang::QualType desugared = type.getSingleStepDesugaredType(ctx);
if (desugared.getTypePtr() == type.getTypePtr())
break;
type = desugared;
} while (!type.isNull());
return false;
}
static bool isIntegerType(clang::QualType clangType) {
if (auto builtinTy = clangType->getAs<clang::BuiltinType>()) {
return (builtinTy->getKind() >= clang::BuiltinType::Bool &&
builtinTy->getKind() <= clang::BuiltinType::UInt128) ||
(builtinTy->getKind() >= clang::BuiltinType::SChar &&
builtinTy->getKind() <= clang::BuiltinType::Int128);
}
return false;
}
/// Whether the given Objective-C type can be imported as an optional type.
static bool canImportAsOptional(clang::ASTContext &ctx, clang::QualType type) {
// Note: this mimics ImportHint::canImportAsOptional.
// Objective-C object pointers.
if (type->getAs<clang::ObjCObjectPointerType>()) return true;
// Block and C pointers, including CF types.
if (type->isBlockPointerType() || type->isPointerType()) return true;
return false;
}
static Optional<ForeignErrorConvention::Kind>
classifyMethodErrorHandling(const clang::ObjCMethodDecl *clangDecl,
OptionalTypeKind resultOptionality) {
// TODO: opt out any non-standard methods here?
clang::ASTContext &clangCtx = clangDecl->getASTContext();
// Check for an explicit attribute.
if (auto attr = clangDecl->getAttr<clang::SwiftErrorAttr>()) {
switch (attr->getConvention()) {
case clang::SwiftErrorAttr::None:
return None;
case clang::SwiftErrorAttr::NonNullError:
return ForeignErrorConvention::NonNilError;
// Only honor null_result if we actually imported as a
// non-optional type.
case clang::SwiftErrorAttr::NullResult:
if (resultOptionality != OTK_None &&
canImportAsOptional(clangCtx, clangDecl->getReturnType()))
return ForeignErrorConvention::NilResult;
return None;
// Preserve the original result type on a zero_result unless we
// imported it as Bool.
case clang::SwiftErrorAttr::ZeroResult:
if (isBoolType(clangCtx, clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroResult;
} else if (isIntegerType(clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroPreservedResult;
}
return None;
// There's no reason to do the same for nonzero_result because the
// only meaningful value remaining would be zero.
case clang::SwiftErrorAttr::NonZeroResult:
if (isIntegerType(clangDecl->getReturnType()))
return ForeignErrorConvention::NonZeroResult;
return None;
}
llvm_unreachable("bad swift_error kind");
}
// Otherwise, apply the default rules.
// For bool results, a zero value is an error.
if (isBoolType(clangCtx, clangDecl->getReturnType())) {
return ForeignErrorConvention::ZeroResult;
}
// For optional reference results, a nil value is normally an error.
if (resultOptionality != OTK_None &&
canImportAsOptional(clangCtx, clangDecl->getReturnType())) {
return ForeignErrorConvention::NilResult;
}
return None;
}
static const char ErrorSuffix[] = "AndReturnError";
static const char AltErrorSuffix[] = "WithError";
/// Look for a method that will import to have the same name as the
/// given method after importing the Nth parameter as an elided error
/// parameter.
static bool hasErrorMethodNameCollision(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *method,
unsigned paramIndex,
StringRef suffixToStrip) {
// Copy the existing selector pieces into an array.
auto selector = method->getSelector();
unsigned numArgs = selector.getNumArgs();
assert(numArgs > 0);
SmallVector<clang::IdentifierInfo *, 4> chunks;
for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
chunks.push_back(selector.getIdentifierInfoForSlot(i));
}
auto &ctx = method->getASTContext();
if (paramIndex == 0 && !suffixToStrip.empty()) {
StringRef name = chunks[0]->getName();
assert(name.endswith(suffixToStrip));
name = name.drop_back(suffixToStrip.size());
chunks[0] = &ctx.Idents.get(name);
} else if (paramIndex != 0) {
chunks.erase(chunks.begin() + paramIndex);
}
auto newSelector = ctx.Selectors.getSelector(numArgs - 1, chunks.data());
const clang::ObjCMethodDecl *conflict;
if (auto iface = method->getClassInterface()) {
conflict = iface->lookupMethod(newSelector, method->isInstanceMethod());
} else {
auto protocol = cast<clang::ObjCProtocolDecl>(method->getDeclContext());
conflict = protocol->getMethod(newSelector, method->isInstanceMethod());
}
if (conflict == nullptr)
return false;
// Look to see if the conflicting decl is unavailable, either because it's
// been marked NS_SWIFT_UNAVAILABLE, because it's actually marked unavailable,
// or because it was deprecated before our API sunset. We can handle
// "conflicts" where one form is unavailable.
return !importer.isUnavailableInSwift(conflict);
}
/// Determine the optionality of the given Objective-C method.
///
/// \param method The Clang method.
static OptionalTypeKind getResultOptionality(
const clang::ObjCMethodDecl *method) {
auto &clangCtx = method->getASTContext();
// If nullability is available on the type, use it.
if (auto nullability = method->getReturnType()->getNullability(clangCtx)) {
return ClangImporter::Implementation::translateNullability(*nullability);
}
// If there is a returns_nonnull attribute, non-null.
if (method->hasAttr<clang::ReturnsNonNullAttr>())
return OTK_None;
// Default to implicitly unwrapped optionals.
return OTK_ImplicitlyUnwrappedOptional;
}
/// \brief Determine whether the given name is reserved for Swift.
static bool isSwiftReservedName(StringRef name) {
tok kind = Lexer::kindOfIdentifier(name, /*InSILMode=*/false);
return (kind != tok::identifier);
}
static Optional<ImportedErrorInfo>
considerErrorImport(ClangImporter::Implementation &importer,
const clang::ObjCMethodDecl *clangDecl,
StringRef &baseName,
SmallVectorImpl<StringRef> &paramNames,
ArrayRef<const clang::ParmVarDecl *> params,
bool isInitializer,
bool hasCustomName) {
// If the declaration name isn't parallel to the actual parameter
// list (e.g. if the method has C-style parameter declarations),
// don't try to apply error conventions.
bool expectsToRemoveError =
hasCustomName && paramNames.size() + 1 == params.size();
if (!expectsToRemoveError && paramNames.size() != params.size())
return None;
for (unsigned index = params.size(); index-- != 0; ) {
// Allow an arbitrary number of trailing blocks.
if (isBlockParameter(params[index]))
continue;
// Otherwise, require the last parameter to be an out-parameter.
auto isErrorOwned = ForeignErrorConvention::IsNotOwned;
if (!isErrorOutParameter(params[index], isErrorOwned))
break;
auto errorKind =
classifyMethodErrorHandling(clangDecl,
getResultOptionality(clangDecl));
if (!errorKind) return None;
// Consider adjusting the imported declaration name to remove the
// parameter.
bool adjustName = !hasCustomName;
// Never do this if it's the first parameter of a constructor.
if (isInitializer && index == 0) {
adjustName = false;
}
// If the error parameter is the first parameter, try removing the
// standard error suffix from the base name.
StringRef suffixToStrip;
StringRef origBaseName = baseName;
if (adjustName && index == 0 && paramNames[0].empty()) {
if (baseName.endswith(ErrorSuffix))
suffixToStrip = ErrorSuffix;
else if (baseName.endswith(AltErrorSuffix))
suffixToStrip = AltErrorSuffix;
if (!suffixToStrip.empty()) {
StringRef newBaseName = baseName.drop_back(suffixToStrip.size());
if (newBaseName.empty() || isSwiftReservedName(newBaseName)) {
adjustName = false;
suffixToStrip = {};
} else {
baseName = newBaseName;
}
}
}
// Also suppress name changes if there's a collision.
// TODO: this logic doesn't really work with init methods
// TODO: this privileges the old API over the new one
if (adjustName &&
hasErrorMethodNameCollision(importer, clangDecl, index,
suffixToStrip)) {
// If there was a conflict on the first argument, and this was
// the first argument and we're not stripping error suffixes, just
// give up completely on error import.
if (index == 0 && suffixToStrip.empty()) {
return None;
// If there was a conflict stripping an error suffix, adjust the
// name but don't change the base name. This avoids creating a
// spurious _: () argument.
} else if (index == 0 && !suffixToStrip.empty()) {
suffixToStrip = {};
baseName = origBaseName;
// Otherwise, give up on adjusting the name.
} else {
adjustName = false;
baseName = origBaseName;
}
}
// If we're adjusting the name, erase the error parameter.
if (adjustName) {
paramNames.erase(paramNames.begin() + index);
}
bool replaceParamWithVoid = !adjustName && !expectsToRemoveError;
ImportedErrorInfo errorInfo {
*errorKind, isErrorOwned, index, replaceParamWithVoid
};
return errorInfo;
}
// Didn't find an error parameter.
return None;
}
/// Determine whether we should lowercase the first word of the given value
/// name.
static bool shouldLowercaseValueName(StringRef name) {
// If we see any lowercase characters, we can lowercase.
for (auto c : name) {
if (clang::isLowercase(c)) return true;
}
// Otherwise, lowercasing will either be a no-op or we have ALL_CAPS.
return false;
}
/// Will recursively print out the fully qualified context for the given name.
/// Ends with a trailing "."
static void
printFullContextPrefix(ImportedName name,
llvm::raw_ostream &os,
ClangImporter::Implementation &Impl) {
const clang::NamedDecl *newDeclContextNamed = nullptr;
switch (name.EffectiveContext.getKind()) {
case EffectiveClangContext::UnresolvedContext:
os << name.EffectiveContext.getUnresolvedName() << ".";
// And we're done!
return;
case EffectiveClangContext::DeclContext: {
auto namedDecl =
dyn_cast<clang::NamedDecl>(name.EffectiveContext.getAsDeclContext());
if (!namedDecl) {
// We're done
return;
}
newDeclContextNamed = cast<clang::NamedDecl>(namedDecl);
break;
}
case EffectiveClangContext::TypedefContext:
newDeclContextNamed = name.EffectiveContext.getTypedefName();
break;
}
// Now, let's print out the parent
assert(newDeclContextNamed && "should of been set");
auto parentName = Impl.importFullName(newDeclContextNamed);
printFullContextPrefix(parentName, os, Impl);
os << parentName.Imported << ".";
}
void ClangImporter::Implementation::printSwiftName(ImportedName name,
bool fullyQualified,
llvm::raw_ostream &os) {
// Property accessors.
bool isGetter = false;
bool isSetter = false;
switch (name.AccessorKind) {
case ImportedAccessorKind::None:
break;
case ImportedAccessorKind::PropertyGetter:
case ImportedAccessorKind::SubscriptGetter:
os << "getter:";
isGetter = true;
break;
case ImportedAccessorKind::PropertySetter:
case ImportedAccessorKind::SubscriptSetter:
os << "setter:";
isSetter = true;
break;
}
if (fullyQualified)
printFullContextPrefix(name, os, *this);
// Base name.
os << name.Imported.getBaseName().str();
// Determine the number of argument labels we'll be producing.
auto argumentNames = name.Imported.getArgumentNames();
unsigned numArguments = argumentNames.size();
if (name.SelfIndex) ++numArguments;
if (isSetter) ++numArguments;
// If the result is a simple name that is not a getter, we're done.
if (numArguments == 0 && name.Imported.isSimpleName() && !isGetter) return;
// We need to produce a function name.
os << "(";
unsigned currentArgName = 0;
for (unsigned i = 0; i != numArguments; ++i) {
// The "self" parameter.
if (name.SelfIndex && *name.SelfIndex == i) {
os << "self:";
continue;
}
if (currentArgName < argumentNames.size()) {
if (argumentNames[currentArgName].empty())
os << "_";
else
os << argumentNames[currentArgName].str();
os << ":";
++currentArgName;
continue;
}
// We don't have a name for this argument.
os << "_:";
}
os << ")";
}
namespace llvm {
// An Identifier is "pointer like".
template<typename T> class PointerLikeTypeTraits;
template<>
class PointerLikeTypeTraits<swift::DeclName> {
public:
static inline void *getAsVoidPointer(swift::DeclName name) {
return name.getOpaqueValue();
}
static inline swift::DeclName getFromVoidPointer(void *ptr) {
return swift::DeclName::getFromOpaqueValue(ptr);
}
enum { NumLowBitsAvailable = 0 };
};
}
/// Retrieve the name of the given Clang declaration context for
/// printing.
static StringRef getClangDeclContextName(const clang::DeclContext *dc) {
auto type = ClangImporter::Implementation::getClangDeclContextType(dc);
if (type.isNull()) return StringRef();
return ClangImporter::Implementation::getClangTypeNameForOmission(
dc->getParentASTContext(),
type).Name;
}
namespace {
/// Merge the a set of imported names produced for the overridden
/// declarations of a given method or property.
template<typename DeclType>
void mergeOverriddenNames(ASTContext &ctx,
const DeclType *decl,
SmallVectorImpl<std::pair<const DeclType *,
ImportedName>>
&overriddenNames) {
typedef std::pair<const DeclType *, ImportedName> OverriddenName;
llvm::SmallPtrSet<DeclName, 4> known;
(void)known.insert(DeclName());
overriddenNames.erase(std::remove_if(overriddenNames.begin(),
overriddenNames.end(),
[&](OverriddenName overridden) {
return !known.insert(
overridden.second.Imported)
.second;
}),
overriddenNames.end());
if (overriddenNames.size() < 2)
return;
// Complain about inconsistencies.
std::string nameStr;
auto method = dyn_cast<clang::ObjCMethodDecl>(decl);
if (method)
nameStr = method->getSelector().getAsString();
else
nameStr = cast<clang::ObjCPropertyDecl>(decl)->getName().str();
for (unsigned i = 1, n = overriddenNames.size(); i != n; ++i) {
ctx.Diags.diagnose(SourceLoc(), diag::inconsistent_swift_name,
method == nullptr,
nameStr,
getClangDeclContextName(decl->getDeclContext()),
overriddenNames[0].second,
getClangDeclContextName(
overriddenNames[0].first->getDeclContext()),
overriddenNames[i].second,
getClangDeclContextName(
overriddenNames[i].first->getDeclContext()));
}
}
}
/// Determine whether the given Objective-C class, or any of its
/// superclasses, either has or inherits a swift_bridge attribute.
static bool
hasOrInheritsSwiftBridgeAttr(const clang::ObjCInterfaceDecl *objcClass) {
do {
// Look at the definition, if there is one.
if (auto def = objcClass->getDefinition())
objcClass = def;
// Check for the swift_bridge attribute.
if (objcClass->hasAttr<clang::SwiftBridgeAttr>())
return true;
// Follow the superclass chain.
objcClass = objcClass->getSuperClass();
} while (objcClass);
return false;
}
/// Skip a leading 'k' in a 'kConstant' pattern
static StringRef stripLeadingK(StringRef name) {
if (name.size() >= 2 && name[0] == 'k' &&
clang::isUppercase(name[1]))
return name.drop_front(1);
return name;
}
/// Strips a trailing "Notification", if present. Returns {} if name doesn't end
/// in "Notification", or it there would be nothing left.
static StringRef stripNotification(StringRef name) {
name = stripLeadingK(name);
StringRef notification = "Notification";
if (name.size() <= notification.size() || !name.endswith(notification))
return {};
return name.drop_back(notification.size());
}
bool ClangImporter::Implementation::isNSNotificationGlobal(
const clang::NamedDecl *decl) {
// Looking for: extern NSString *fooNotification;
// Must be extern global variable
auto vDecl = dyn_cast<clang::VarDecl>(decl);
if (!vDecl || !vDecl->hasExternalFormalLinkage())
return false;
// No explicit swift_name
if (decl->getAttr<clang::SwiftNameAttr>())
return false;
// Must end in Notification
if (!vDecl->getDeclName().isIdentifier())
return false;
if (stripNotification(vDecl->getName()).empty())
return false;
// Must be NSString *
if (!isNSString(vDecl->getType()))
return false;
// We're a match!
return true;
}
/// Whether the decl is from a module who requested import-as-member inference
static bool moduleIsInferImportAsMember(const clang::NamedDecl *decl,
clang::Sema &clangSema) {
clang::Module *submodule;
if (auto m = decl->getImportedOwningModule()) {
submodule = m;
} else if (auto m = decl->getLocalOwningModule()) {
submodule = m;
} else if (auto m = clangSema.getPreprocessor().getCurrentModule()) {
submodule = m;
} else if (auto m = clangSema.getPreprocessor().getCurrentSubmodule()) {
submodule = m;
} else {
return false;
}
while (submodule) {
if (submodule->IsSwiftInferImportAsMember) {
// HACK HACK HACK: This is a workaround for some module invalidation issue
// and inconsistency. This will go away soon.
if (submodule->Name != "CoreGraphics")
return false;
return true;
}
submodule = submodule->Parent;
}
return false;
}
// If this decl is associated with a swift_newtype typedef, return it, otherwise
// null
clang::TypedefNameDecl *ClangImporter::Implementation::findSwiftNewtype(
const clang::NamedDecl *decl, clang::Sema &clangSema, bool useSwift2Name) {
// If we aren't honoring the swift_newtype attribute, don't even
// bother looking. Similarly for swift2 names
if (useSwift2Name)
return nullptr;
auto varDecl = dyn_cast<clang::VarDecl>(decl);
if (!varDecl)
return nullptr;
if (auto typedefTy = varDecl->getType()->getAs<clang::TypedefType>())
if (getSwiftNewtypeAttr(typedefTy->getDecl(), false))
return typedefTy->getDecl();
// Special case: "extern NSString * fooNotification" adopts
// NSNotificationName type, and is a member of NSNotificationName
if (ClangImporter::Implementation::isNSNotificationGlobal(decl)) {
clang::IdentifierInfo *notificationName =
&clangSema.getASTContext().Idents.get("NSNotificationName");
clang::LookupResult lookupResult(clangSema, notificationName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, nullptr))
return nullptr;
auto nsDecl = lookupResult.getAsSingle<clang::TypedefNameDecl>();
if (!nsDecl)
return nullptr;
// Make sure it also has a newtype decl on it
if (getSwiftNewtypeAttr(nsDecl, false))
return nsDecl;
return nullptr;
}
return nullptr;
}
/// Match the name of the given Objective-C method to its enclosing class name
/// to determine the name prefix that would be stripped if the class method
/// were treated as an initializer.
static Optional<unsigned> matchFactoryAsInitName(
const clang::ObjCMethodDecl *method){
// Only class methods can be mapped to initializers in this way.
if (!method->isClassMethod()) return None;
// Said class methods must be in an actual class.
auto objcClass = method->getClassInterface();
if (!objcClass) return None;
// See if we can match the class name to the beginning of the first
// selector piece.
auto firstPiece = method->getSelector().getNameForSlot(0);
StringRef firstArgLabel = matchLeadingTypeName(firstPiece,
objcClass->getName());
if (firstArgLabel.size() == firstPiece.size())
return None;
// FIXME: Factory methods cannot have dummy parameters added for
// historical reasons.
if (!firstArgLabel.empty() && method->getSelector().getNumArgs() == 0)
return None;
// Return the prefix length.
return firstPiece.size() - firstArgLabel.size();
}
/// Determine the kind of initializer the given factory method could be mapped
/// to, or produce \c None.
static Optional<CtorInitializerKind>
determineCtorInitializerKind(const clang::ObjCMethodDecl *method) {
// Determine whether we have a suitable return type.
if (method->hasRelatedResultType()) {
// When the factory method has an "instancetype" result type, we
// can import it as a convenience factory method.
return CtorInitializerKind::ConvenienceFactory;
}
if (auto objcPtr = method->getReturnType()
->getAs<clang::ObjCObjectPointerType>()) {
auto objcClass = method->getClassInterface();
if (!objcClass) return None;
if (objcPtr->getInterfaceDecl() != objcClass) {
// FIXME: Could allow a subclass here, but the rest of the compiler
// isn't prepared for that yet.
return None;
}
// Factory initializer.
return CtorInitializerKind::Factory;
}
// Not imported as an initializer.
return None;
}
/// Determine whether the given class method should be imported as
/// an initializer.
static FactoryAsInitKind
getFactoryAsInit(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method) {
if (auto *customNameAttr = method->getAttr<clang::SwiftNameAttr>()) {
if (customNameAttr->getName().startswith("init("))
return FactoryAsInitKind::AsInitializer;
else
return FactoryAsInitKind::AsClassMethod;
}
if (method->hasAttr<clang::SwiftSuppressFactoryAsInitAttr>()) {
return FactoryAsInitKind::AsClassMethod;
}
return FactoryAsInitKind::Infer;
}
/// Determine whether this Objective-C method should be imported as
/// an initializer.
///
/// \param prefixLength Will be set to the length of the prefix that
/// should be stripped from the first selector piece, e.g., "init"
/// or the restated name of the class in a factory method.
///
/// \param kind Will be set to the kind of initializer being
/// imported. Note that this does not distinguish designated
/// vs. convenience; both will be classified as "designated".
static bool shouldImportAsInitializer(const clang::ObjCMethodDecl *method,
unsigned &prefixLength,
CtorInitializerKind &kind) {
/// Is this an initializer?
if (ClangImporter::Implementation::isInitMethod(method)) {
prefixLength = 4;
kind = CtorInitializerKind::Designated;
return true;
}
// It must be a class method.
if (!method->isClassMethod()) return false;
// Said class methods must be in an actual class.
auto objcClass = method->getClassInterface();
if (!objcClass) return false;
// Check whether we should try to import this factory method as an
// initializer.
switch (getFactoryAsInit(objcClass, method)) {
case FactoryAsInitKind::AsInitializer:
// Okay; check for the correct result type below.
prefixLength = 0;
break;
case FactoryAsInitKind::Infer:
// See if we can match the class name to the beginning of the first
// selector piece.
if (auto matchedLength = matchFactoryAsInitName(method)) {
prefixLength = *matchedLength;
break;
}
return false;
case FactoryAsInitKind::AsClassMethod:
return false;
}
// Determine what kind of initializer we're creating.
if (auto initKind = determineCtorInitializerKind(method)) {
kind = *initKind;
return true;
}
// Not imported as an initializer.
return false;
}
/// Find the swift_name attribute associated with this declaration, if
/// any.
///
/// \param swift2Name When true, restrict the results to those that were
/// present in Swift 2.
static clang::SwiftNameAttr *findSwiftNameAttr(const clang::Decl *decl,
bool swift2Name) {
// Find the attribute.
auto attr = decl->getAttr<clang::SwiftNameAttr>();
if (!attr) return nullptr;
// If we're not emulating the Swift 2 behavior, return what we got.
if (!swift2Name) return attr;
// API notes produce implicit attributes; ignore them because they weren't
// used for naming in Swift 2.
if (attr->isImplicit()) return nullptr;
// Whitelist certain explicitly-written Swift names that were
// permitted and used in Swift 2. All others are ignored, so that we are
// assuming a more direct translation from the Objective-C APIs into Swift.
if (auto enumerator = dyn_cast<clang::EnumConstantDecl>(decl)) {
// Foundation's NSXMLDTDKind had an explicit swift_name attribute in
// Swift 2. Honor it.
if (enumerator->getName() == "NSXMLDTDKind") return attr;
return nullptr;
}
if (auto method = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// Special case: mapping to an initializer.
if (attr->getName().startswith("init(")) {
// If we have a class method, honor the annotation to turn a class
// method into an initializer.
if (method->isClassMethod()) return attr;
return nullptr;
}
// Special case: preventing a mapping to an initializer.
if (matchFactoryAsInitName(method) && determineCtorInitializerKind(method))
return attr;
return nullptr;
}
return nullptr;
}
/// Prepare global name for importing onto a swift_newtype.
static StringRef determineSwiftNewtypeBaseName(StringRef baseName,
StringRef newtypeName,
bool &strippedPrefix) {
StringRef newBaseName = stripLeadingK(baseName);
if (newBaseName != baseName) {
baseName = newBaseName;
strippedPrefix = true;
}
// Special case: Strip Notification for NSNotificationName
auto stripped = stripNotification(baseName);
if (!stripped.empty())
return stripped;
bool nonIdentifier = false;
auto pre = getCommonWordPrefix(newtypeName, baseName, nonIdentifier);
if (pre.size()) {
baseName = baseName.drop_front(pre.size());
strippedPrefix = true;
}
return baseName;
}
auto ClangImporter::Implementation::importFullName(
const clang::NamedDecl *D,
ImportNameOptions options,
clang::Sema *clangSemaOverride) -> ImportedName {
clang::Sema &clangSema = clangSemaOverride ? *clangSemaOverride
: getClangSema();
ImportedName result;
/// Whether we want the Swift 2.0 name.
bool swift2Name = options.contains(ImportNameFlags::Swift2Name);
// Objective-C categories and extensions don't have names, despite
// being "named" declarations.
if (isa<clang::ObjCCategoryDecl>(D))
return result;
// Dig out the definition, if there is one.
if (auto def = getDefinitionForClangTypeDecl(D)) {
if (*def)
D = static_cast<const clang::NamedDecl *>(*def);
}
// Compute the effective context.
auto dc = const_cast<clang::DeclContext *>(D->getDeclContext());
// Enumerators can end up within their enclosing enum or in the global
// scope, depending how their enclosing enumeration is imported.
if (isa<clang::EnumConstantDecl>(D)) {
auto enumDecl = cast<clang::EnumDecl>(dc);
switch (getEnumKind(enumDecl, &clangSema.getPreprocessor())) {
case EnumKind::Enum:
case EnumKind::Options:
// Enums are mapped to Swift enums, Options to Swift option sets.
result.EffectiveContext = cast<clang::DeclContext>(enumDecl);
break;
case EnumKind::Constants:
case EnumKind::Unknown:
// The enum constant goes into the redeclaration context of the
// enum.
result.EffectiveContext = enumDecl->getRedeclContext();
break;
}
// Import onto a swift_newtype if present
} else if (auto newtypeDecl = findSwiftNewtype(D, clangSema, swift2Name)) {
result.EffectiveContext = newtypeDecl;
result.ImportAsMember = true;
// Everything else goes into its redeclaration context.
} else {
result.EffectiveContext = dc->getRedeclContext();
}
// Anything in an Objective-C category or extension is adjusted to the
// class context.
if (auto category = dyn_cast_or_null<clang::ObjCCategoryDecl>(
result.EffectiveContext.getAsDeclContext())) {
// If the enclosing category is invalid, we cannot import the declaration.
if (category->isInvalidDecl()) return result;
result.EffectiveContext = category->getClassInterface();
}
// Find the original method/property declaration and retrieve the
// name from there.
if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
// Inherit the name from the "originating" declarations, if
// there are any.
SmallVector<std::pair<const clang::ObjCMethodDecl *, ImportedName>, 4>
overriddenNames;
SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
method->getOverriddenMethods(overriddenMethods);
for (auto overridden : overriddenMethods) {
const auto overriddenName = importFullName(overridden, options,
clangSemaOverride);
if (overriddenName.Imported)
overriddenNames.push_back({overridden, overriddenName});
}
// If we found any names of overridden methods, return those names.
if (!overriddenNames.empty()) {
if (overriddenNames.size() > 1)
mergeOverriddenNames(SwiftContext, method, overriddenNames);
overriddenNames[0].second.EffectiveContext = result.EffectiveContext;
return overriddenNames[0].second;
}
} else if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
// Inherit the name from the "originating" declarations, if
// there are any.
if (auto getter = property->getGetterMethodDecl()) {
SmallVector<std::pair<const clang::ObjCPropertyDecl *, ImportedName>, 4>
overriddenNames;
SmallVector<const clang::ObjCMethodDecl *, 4> overriddenMethods;
SmallPtrSet<const clang::ObjCPropertyDecl *, 4> knownProperties;
(void)knownProperties.insert(property);
getter->getOverriddenMethods(overriddenMethods);
for (auto overridden : overriddenMethods) {
if (!overridden->isPropertyAccessor()) continue;
auto overriddenProperty = overridden->findPropertyDecl(true);
if (!overriddenProperty) continue;
if (!knownProperties.insert(overriddenProperty).second) continue;
const auto overriddenName = importFullName(overriddenProperty,
options,
clangSemaOverride);
if (overriddenName.Imported)
overriddenNames.push_back({overriddenProperty, overriddenName});
}
// If we found any names of overridden methods, return those names.
if (!overriddenNames.empty()) {
if (overriddenNames.size() > 1)
mergeOverriddenNames(SwiftContext, property, overriddenNames);
overriddenNames[0].second.EffectiveContext = result.EffectiveContext;
return overriddenNames[0].second;
}
}
}
// If we have a swift_name attribute, use that.
if (auto *nameAttr = findSwiftNameAttr(D, swift2Name)) {
bool skipCustomName = false;
// Parse the name.
ParsedDeclName parsedName = parseDeclName(nameAttr->getName());
if (!parsedName || parsedName.isOperator()) return result;
// If we have an Objective-C method that is being mapped to an
// initializer (e.g., a factory method whose name doesn't fit the
// convention for factory methods), make sure that it can be
// imported as an initializer.
bool isInitializer = false;
auto method = dyn_cast<clang::ObjCMethodDecl>(D);
if (method) {
unsigned initPrefixLength;
if (parsedName.BaseName == "init" && parsedName.IsFunctionName) {
if (!shouldImportAsInitializer(method, initPrefixLength,
result.InitKind)) {
// We cannot import this as an initializer anyway.
return { };
}
// If this swift_name attribute maps a factory method to an
// initializer and we were asked not to do so, ignore the
// custom name.
if (options.contains(ImportNameFlags::SuppressFactoryMethodAsInit) &&
(result.InitKind == CtorInitializerKind::Factory ||
result.InitKind == CtorInitializerKind::ConvenienceFactory)) {
skipCustomName = true;
} else {
// Note that this is an initializer.
isInitializer = true;
}
}
}
if (!skipCustomName) {
result.HasCustomName = true;
result.Imported = parsedName.formDeclName(SwiftContext);
// Handle globals treated as members.
if (parsedName.isMember()) {
// FIXME: Make sure this thing is global.
result.EffectiveContext = parsedName.ContextName;
if (parsedName.SelfIndex)
result.SelfIndex = parsedName.SelfIndex;
result.ImportAsMember = true;
if (parsedName.BaseName == "init")
result.InitKind = CtorInitializerKind::Factory;
}
// Map property getters/setters.
if (parsedName.IsGetter)
result.AccessorKind = ImportedAccessorKind::PropertyGetter;
else if (parsedName.IsSetter)
result.AccessorKind = ImportedAccessorKind::PropertySetter;
if (method && parsedName.IsFunctionName) {
// Get the parameters.
ArrayRef<const clang::ParmVarDecl *> params{
method->param_begin(),
method->param_end()
};
result.ErrorInfo = considerErrorImport(*this, method,
parsedName.BaseName,
parsedName.ArgumentLabels,
params,
isInitializer,
/*hasCustomName=*/true);
}
return result;
}
} else if (!swift2Name &&
(InferImportAsMember ||
moduleIsInferImportAsMember(D, clangSema)) &&
(isa<clang::VarDecl>(D) || isa<clang::FunctionDecl>(D)) &&
dc->isTranslationUnit()) {
auto inference = IAMResult::infer(SwiftContext, clangSema, D);
if (inference.isImportAsMember()) {
result.ImportAsMember = true;
result.Imported = inference.name;
result.EffectiveContext = inference.effectiveDC;
// Instance or static
if (inference.selfIndex)
result.SelfIndex = inference.selfIndex;
// Property
if (inference.isGetter())
result.AccessorKind = ImportedAccessorKind::PropertyGetter;
else if (inference.isSetter())
result.AccessorKind = ImportedAccessorKind::PropertySetter;
// Inits are factory. These C functions are neither convenience nor
// designated, as they return a fully formed object of that type.
if (inference.isInit())
result.InitKind = CtorInitializerKind::Factory;
return result;
}
}
// For empty names, there is nothing to do.
if (D->getDeclName().isEmpty()) return result;
/// Whether the result is a function name.
bool isFunction = false;
bool isInitializer = false;
unsigned initializerPrefixLen;
StringRef baseName;
SmallVector<StringRef, 4> argumentNames;
SmallString<16> selectorSplitScratch;
ArrayRef<const clang::ParmVarDecl *> params;
switch (D->getDeclName().getNameKind()) {
case clang::DeclarationName::CXXConstructorName:
case clang::DeclarationName::CXXConversionFunctionName:
case clang::DeclarationName::CXXDestructorName:
case clang::DeclarationName::CXXLiteralOperatorName:
case clang::DeclarationName::CXXOperatorName:
case clang::DeclarationName::CXXUsingDirective:
// Handling these is part of C++ interoperability.
llvm_unreachable("unhandled C++ interoperability");
case clang::DeclarationName::Identifier:
// Map the identifier.
baseName = D->getDeclName().getAsIdentifierInfo()->getName();
// For Objective-C BOOL properties, use the name of the getter
// which, conventionally, has an "is" prefix.
if (!swift2Name) {
if (auto property = dyn_cast<clang::ObjCPropertyDecl>(D)) {
if (isBoolType(clangSema.Context, property->getType()))
baseName = property->getGetterName().getNameForSlot(0);
}
}
// For C functions, create empty argument names.
if (auto function = dyn_cast<clang::FunctionDecl>(D)) {
isFunction = true;
params = { function->param_begin(), function->param_end() };
for (auto param : params) {
(void)param;
argumentNames.push_back(StringRef());
}
if (function->isVariadic())
argumentNames.push_back(StringRef());
}
break;
case clang::DeclarationName::ObjCMultiArgSelector:
case clang::DeclarationName::ObjCOneArgSelector:
case clang::DeclarationName::ObjCZeroArgSelector: {
auto objcMethod = cast<clang::ObjCMethodDecl>(D);
isInitializer = shouldImportAsInitializer(objcMethod, initializerPrefixLen,
result.InitKind);
// If we would import a factory method as an initializer but were
// asked not to, don't consider this as an initializer.
if (isInitializer &&
options.contains(ImportNameFlags::SuppressFactoryMethodAsInit) &&
(result.InitKind == CtorInitializerKind::Factory ||
result.InitKind == CtorInitializerKind::ConvenienceFactory)) {
isInitializer = false;
}
// Map the Objective-C selector directly.
auto selector = D->getDeclName().getObjCSelector();
if (isInitializer)
baseName = "init";
else
baseName = selector.getNameForSlot(0);
// Get the parameters.
params = { objcMethod->param_begin(), objcMethod->param_end() };
// If we have a variadic method for which we need to drop the last
// selector piece, do so now.
unsigned numArgs = selector.getNumArgs();
if (objcMethod->isVariadic() && shouldMakeSelectorNonVariadic(selector)) {
--numArgs;
result.DroppedVariadic = true;
params = params.drop_back(1);
}
for (unsigned index = 0; index != numArgs; ++index) {
if (index == 0) {
argumentNames.push_back(StringRef());
} else {
StringRef argName = selector.getNameForSlot(index);
argumentNames.push_back(argName);
}
}
// For initializers, compute the first argument name.
if (isInitializer) {
// Skip over the prefix.
auto argName = selector.getNameForSlot(0).substr(initializerPrefixLen);
// Drop "With" if present after the "init".
bool droppedWith = false;
if (argName.startswith("With")) {
argName = argName.substr(4);
droppedWith = true;
}
// Lowercase the remaining argument name.
argName = camel_case::toLowercaseWord(argName, selectorSplitScratch);
// If we dropped "with" and ended up with a reserved name,
// put "with" back.
if (droppedWith && isSwiftReservedName(argName)) {
selectorSplitScratch = "with";
selectorSplitScratch += selector.getNameForSlot(0).substr(
initializerPrefixLen + 4);
argName = selectorSplitScratch;
}
// Set the first argument name to be the name we computed. If
// there is no first argument, create one for this purpose.
if (argumentNames.empty()) {
if (!argName.empty()) {
// FIXME: Record what happened here for the caller?
argumentNames.push_back(argName);
}
} else {
argumentNames[0] = argName;
}
}
result.ErrorInfo = considerErrorImport(*this, objcMethod, baseName,
argumentNames, params, isInitializer,
/*hasCustomName=*/false);
isFunction = true;
// Is this one of the accessors for subscripts?
if (objcMethod->getMethodFamily() == clang::OMF_None &&
objcMethod->isInstanceMethod()) {
if (isNonNullarySelector(objcMethod->getSelector(),
{ "objectAtIndexedSubscript" }) ||
isNonNullarySelector(objcMethod->getSelector(),
{ "objectForKeyedSubscript" }))
result.AccessorKind = ImportedAccessorKind::SubscriptGetter;
else if (isNonNullarySelector(objcMethod->getSelector(),
{ "setObject", "atIndexedSubscript" }) ||
isNonNullarySelector(objcMethod->getSelector(),
{ "setObject", "forKeyedSubscript" }))
result.AccessorKind = ImportedAccessorKind::SubscriptSetter;
}
break;
}
}
// Perform automatic name transformations.
// Enumeration constants may have common prefixes stripped.
bool strippedPrefix = false;
if (isa<clang::EnumConstantDecl>(D)) {
auto enumDecl = cast<clang::EnumDecl>(D->getDeclContext());
auto enumInfo = getEnumInfo(enumDecl, &clangSema.getPreprocessor());
StringRef removePrefix = enumInfo.getConstantNamePrefix();
if (!removePrefix.empty() && baseName.startswith(removePrefix)) {
baseName = baseName.substr(removePrefix.size());
strippedPrefix = true;
}
}
// If the error is an error enum, it will be mapped to the 'Code'
// enum nested within an NSError-containing struct. Strip the word
// "Code" off the end of the name, if it's there, because it's
// redundant.
if (auto enumDecl = dyn_cast<clang::EnumDecl>(D)) {
auto enumInfo = getEnumInfo(enumDecl, &clangSema.getPreprocessor());
if (enumInfo.isErrorEnum() && baseName.size() > 4 &&
camel_case::getLastWord(baseName) == "Code")
baseName = baseName.substr(0, baseName.size() - 4);
}
auto hasConflict = [&](const clang::IdentifierInfo *proposedName,
const clang::TypedefNameDecl *cfTypedef) -> bool {
// Test to see if there is a value with the same name as 'proposedName'
// in the same module as the decl
// FIXME: This will miss macros.
auto clangModule = getClangSubmoduleForDecl(D);
if (clangModule.hasValue() && clangModule.getValue())
clangModule = clangModule.getValue()->getTopLevelModule();
auto conflicts = [&](const clang::Decl *OtherD) -> bool {
// If these are simply redeclarations, they do not conflict.
if (D->getCanonicalDecl() == OtherD->getCanonicalDecl()) return false;
// If we have a CF typedef, check whether the "other"
// declaration we found is just the opaque type behind it. If
// so, it does not conflict.
if (cfTypedef) {
if (auto cfPointerTy =
cfTypedef->getUnderlyingType()->getAs<clang::PointerType>()) {
if (auto tagDecl = cfPointerTy->getPointeeType()->getAsTagDecl()) {
if (tagDecl->getCanonicalDecl() == OtherD)
return false;
}
}
}
auto declModule = getClangSubmoduleForDecl(OtherD);
if (!declModule.hasValue())
return false;
// Handle the bridging header case. This is pretty nasty since things
// can get added to it *later*, but there's not much we can do.
if (!declModule.getValue())
return *clangModule == nullptr;
return *clangModule == declModule.getValue()->getTopLevelModule();
};
// Allow this lookup to find hidden names. We don't want the
// decision about whether to rename the decl to depend on
// what exactly the user has imported. Indeed, if we're being
// asked to resolve a serialization cross-reference, the user
// may not have imported this module at all, which means a
// normal lookup wouldn't even find the decl!
//
// Meanwhile, we don't need to worry about finding unwanted
// hidden declarations from different modules because we do a
// module check before deciding that there's a conflict.
clang::LookupResult lookupResult(clangSema, proposedName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
lookupResult.setAllowHidden(true);
lookupResult.suppressDiagnostics();
if (clangSema.LookupName(lookupResult, /*scope=*/nullptr)) {
if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
return true;
}
lookupResult.clear(clang::Sema::LookupTagName);
if (clangSema.LookupName(lookupResult, /*scope=*/nullptr)) {
if (std::any_of(lookupResult.begin(), lookupResult.end(), conflicts))
return true;
}
return false;
};
// Objective-C protocols may have the suffix "Protocol" appended if
// the non-suffixed name would conflict with another entity in the
// same top-level module.
SmallString<16> baseNameWithProtocolSuffix;
if (auto objcProto = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (objcProto->hasDefinition()) {
if (hasConflict(objcProto->getIdentifier(), nullptr)) {
baseNameWithProtocolSuffix = baseName;
baseNameWithProtocolSuffix += SWIFT_PROTOCOL_SUFFIX;
baseName = baseNameWithProtocolSuffix;
}
}
}
// Typedef declarations might be CF types that will drop the "Ref"
// suffix.
clang::ASTContext &clangCtx = clangSema.Context;
if (!swift2Name) {
if (auto typedefNameDecl = dyn_cast<clang::TypedefNameDecl>(D)) {
auto swiftName = getCFTypeName(typedefNameDecl);
if (!swiftName.empty() &&
!hasConflict(&clangCtx.Idents.get(swiftName), typedefNameDecl)) {
// Adopt the requested name.
baseName = swiftName;
}
}
}
// Omit needless words.
StringScratchSpace omitNeedlessWordsScratch;
// swift_newtype-ed declarations may have common words with the type name
// stripped.
if (auto newtypeDecl = findSwiftNewtype(D, clangSema, swift2Name)) {
baseName = determineSwiftNewtypeBaseName(baseName, newtypeDecl->getName(),
strippedPrefix);
}
if (!result.isSubscriptAccessor() && !swift2Name) {
// Check whether the module in which the declaration resides has a
// module prefix and will map into Swift as a type. If so, strip
// that prefix off when present.
if (D->getDeclContext()->getRedeclContext()->isFileContext() &&
(isa<clang::TypeDecl>(D) ||
(isa<clang::ObjCInterfaceDecl>(D) &&
!hasOrInheritsSwiftBridgeAttr(cast<clang::ObjCInterfaceDecl>(D))) ||
isa<clang::ObjCProtocolDecl>(D)) &&
!isUnavailableInSwift(D)) {
// Find the original declaration, from which we can determine
// the owning module.
const clang::Decl *owningD = D->getCanonicalDecl();
if (auto def = getDefinitionForClangTypeDecl(D)) {
if (*def)
owningD = *def;
}
SmallString<32> moduleName;
if (auto module = owningD->getImportedOwningModule())
moduleName = module->getTopLevelModuleName();
else
moduleName = owningD->getASTContext().getLangOpts().CurrentModule;
}
// Objective-C properties.
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(D)) {
auto contextType = getClangDeclContextType(D->getDeclContext());
if (!contextType.isNull()) {
auto contextTypeName = getClangTypeNameForOmission(clangCtx,
contextType);
auto propertyTypeName = getClangTypeNameForOmission(
clangCtx, objcProperty->getType());
// Find the property names.
const InheritedNameSet *allPropertyNames = nullptr;
if (!contextType.isNull()) {
if (auto objcPtrType = contextType->getAsObjCInterfacePointerType())
if (auto objcClassDecl = objcPtrType->getInterfaceDecl())
allPropertyNames = SwiftContext.getAllPropertyNames(
objcClassDecl,
/*forInstance=*/true);
}
(void)omitNeedlessWords(baseName, { }, "", propertyTypeName,
contextTypeName, { }, /*returnsSelf=*/false,
/*isProperty=*/true, allPropertyNames,
omitNeedlessWordsScratch);
}
}
// Objective-C methods.
if (auto method = dyn_cast<clang::ObjCMethodDecl>(D)) {
(void)omitNeedlessWordsInFunctionName(
clangSema,
baseName,
argumentNames,
params,
method->getReturnType(),
method->getDeclContext(),
getNonNullArgs(method, params),
result.ErrorInfo ? Optional<unsigned>(result.ErrorInfo->ParamIndex)
: None,
method->hasRelatedResultType(),
method->isInstanceMethod(),
omitNeedlessWordsScratch);
}
// If the result is a value, lowercase it.
if (strippedPrefix && isa<clang::ValueDecl>(D) &&
shouldLowercaseValueName(baseName)) {
baseName =
camel_case::toLowercaseInitialisms(baseName,
omitNeedlessWordsScratch);
}
}
// Local function to determine whether the given declaration is subject to
// a swift_private attribute.
auto hasSwiftPrivate = [&clangSema, this](const clang::NamedDecl *D) {
if (D->hasAttr<clang::SwiftPrivateAttr>())
return true;
// Enum constants that are not imported as members should be considered
// private if the parent enum is marked private.
if (auto *ECD = dyn_cast<clang::EnumConstantDecl>(D)) {
auto *ED = cast<clang::EnumDecl>(ECD->getDeclContext());
switch (getEnumKind(ED, &clangSema.getPreprocessor())) {
case EnumKind::Constants:
case EnumKind::Unknown:
if (ED->hasAttr<clang::SwiftPrivateAttr>())
return true;
if (auto *enumTypedef = ED->getTypedefNameForAnonDecl())
if (enumTypedef->hasAttr<clang::SwiftPrivateAttr>())
return true;
break;
case EnumKind::Enum:
case EnumKind::Options:
break;
}
}
return false;
};
// If this declaration has the swift_private attribute, prepend "__" to the
// appropriate place.
SmallString<16> swiftPrivateScratch;
if (hasSwiftPrivate(D)) {
// Make the given name private.
//
// Returns true if this is not possible.
auto makeNamePrivate = [](bool isInitializer,
StringRef &baseName,
SmallVectorImpl<StringRef> &argumentNames,
CtorInitializerKind initKind,
SmallString<16> &scratch) -> bool {
scratch = "__";
if (isInitializer) {
// For initializers, prepend "__" to the first argument name.
if (argumentNames.empty()) {
// FIXME: ... unless it was from a factory method, for historical
// reasons.
if (initKind == CtorInitializerKind::Factory ||
initKind == CtorInitializerKind::ConvenienceFactory)
return true;
// FIXME: Record that we did this.
argumentNames.push_back("__");
} else {
scratch += argumentNames[0];
argumentNames[0] = scratch;
}
} else {
// For all other entities, prepend "__" to the base name.
scratch += baseName;
baseName = scratch;
}
return false;
};
// Make the name private.
if (makeNamePrivate(isInitializer, baseName, argumentNames,
result.InitKind, swiftPrivateScratch))
return result;
}
result.Imported = formDeclName(SwiftContext, baseName, argumentNames,
isFunction);
return result;
}