[Embedded] Reimplement Float16/32/64 parsing in Swift

This reimplements the underlying support for `Float16(_:StringSlice)`,
`Float32(_:StringSlice)`, and `Float64(_:StringSlice)` in pure Swift,
using the same core algorithm currently used by Apple's libc.  Those
`StringSlice` initializers are in turn used by `Float16(_:String)`,
`Float32(_:String)`, and `Float64(_:String)`.

**Supports Embedded**: This fully supports Embedded Swift and
insulates us from variations in libc implementations.

**Corrects bugs in Float16 parsing**: The previous version of
`Float16` parsing called libc `strtof()` to parse to a 32-bit float,
then rounded to `Float16`. (This was necessary because float16
parsing functions are not widely supported in C implementations.)
This double-rounding systematically corrupted NaN payloads and
resulted in 1 ULP errors for certain decimal and hexadecimal inputs.
The new version parses `Float16` directly, avoiding these errors.

**Modest perforamnce improvement**:  The old version had to copy
the Swift string to construct a C string.  For inputs longer than
15 characters, this typically required a heap allocation, which added
up to 20% to the runtime.  The new version parses directly from a Swift
string, avoiding this copy and heap allocation.
This commit is contained in:
Tim Kientzle
2025-12-01 16:45:04 -08:00
parent 767c569f89
commit 93eb82c9a3
8 changed files with 3464 additions and 4 deletions

View File

@@ -80,6 +80,7 @@ add_library(swiftCore
FlatMap.swift
Flatten.swift
FloatingPoint.swift
FloatingPointFromString.swift
FloatingPointToString.swift
Hashable.swift
AnyHashable.swift # ORDER DEPENDENCY

View File

@@ -261,6 +261,7 @@ split_embedded_sources(
OUT_LIST_NORMAL SWIFTLIB_GYB_SOURCES
NORMAL AtomicInt.swift.gyb
EMBEDDED FloatingPointFromString.swift
EMBEDDED FloatingPointParsing.swift.gyb
EMBEDDED FloatingPointToString.swift
EMBEDDED FloatingPointTypes.swift.gyb

File diff suppressed because it is too large Load Diff

View File

@@ -191,14 +191,54 @@ extension ${Self}: LosslessStringConvertible {
%end
}
// Caveat: This implementation used to be inlineable.
// In particular, we still have to export
// _swift_stdlib_strtoXYZ_clocale()
// as ABI to support old compiled code that still requires it.
// Caveat: Prior to Swift 5.3, there was an implementation of this
// function that was inlineable and which called a C shim called
// _swift_stdlib_strtoX_clocale() (where `X` was f/d/ld) for the
// low-level work.
// So we have to preserve that C ABI to support extant
// compiled code that still requires it. In particular, any code
// that was built to support macOS < 11.0, iOS/tvOS < 14.0, or watchOS
// < 7.0 will need that function.
// Important: This function is very deliberately NOT inlineable.
// The `swift_float${bits}_parse` functions are internal implementation
// details that should not be directly exposed. (But maybe we should
// someday expose a new `init?(_ text: UTF8Span)`?)
% if bits in [16, 32, 64]:
// All-Swift implementation for Float16/32/64
@available(SwiftStdlib 5.3, *)
public init?(_ text: Substring) {
// TODO: Someday, this whole function should simplify down to just
// the following, but it's hard to do that today without relying on
// `if #available`, which inserts a pointless runtime check. Someday,
// a richer availability story might make this possible.
/*
guard let parsed = parse_float${bits}(text.utf8.span) else {
return nil
}
self = parsed
*/
let parsed = unsafe text.base._guts.withFastUTF8 { chars -> ${Self}? in
unsafe parse_float${bits}(chars.span)
}
if let parsed {
self = parsed
} else {
return nil
}
}
% else:
// For now, continue relying on libc for Float80 support
@available(SwiftStdlib 5.3, *)
public init?(_ text: Substring) {
self = 0.0
let success = unsafe _withUnprotectedUnsafeMutablePointer(to: &self) { p -> Bool in
// Make a copy of `text` to ensure we have a null-terminated C string
// to pass to the libc API:
unsafe text.withCString { chars -> Bool in
switch unsafe chars[0] {
case 9, 10, 11, 12, 13, 32:
@@ -217,8 +257,10 @@ extension ${Self}: LosslessStringConvertible {
return nil
}
}
% end
}
% if bits in [16,80]:
#endif
% end

View File

@@ -178,6 +178,7 @@
"UInt128.swift"],
"Floating": [
"FloatingPoint.swift",
"FloatingPointFromString.swift",
"FloatingPointParsing.swift",
"FloatingPointToString.swift",
"FloatingPointTypes.swift",

View File

@@ -0,0 +1,264 @@
// RUN: %target-run-simple-swift
// REQUIRES: executable_test
// Cannot test with old OS stdlib, because that used libc strtof
// for parsing, which results in incorrect results.
// UNSUPPORTED: use_os_stdlib
import StdlibUnittest
let tests = TestSuite("FloatingPointParsing")
fileprivate func expectRoundTrip(
_ value: Float16,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let text = value.debugDescription
let roundTrip = Float16(Substring(text))
expectNotNil(roundTrip, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let roundTrip {
expectEqual(roundTrip.bitPattern, value.bitPattern, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
fileprivate func expectParse(
_ input: String,
_ expected: Float16,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float16(Substring(input))
expectNotNil(parsed, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let parsed {
expectEqual(parsed.bitPattern, expected.bitPattern, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
func expectParseFails(
_ input: String,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float16(Substring(input))
expectNil(parsed, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
tests.test("Invalids") {
expectParseFails("")
expectParseFails("-")
expectParseFails("+")
expectParseFails("&")
expectParseFails("+x")
expectParseFails("x")
}
tests.test("Infinities") {
expectParse("inf", Float16.infinity)
expectParse("+inf", Float16.infinity)
expectParse("-inf", -Float16.infinity)
expectParse("INF", Float16.infinity)
expectParse("InF", Float16.infinity)
expectParse("iNf", Float16.infinity)
expectParse("infinity", Float16.infinity)
expectParse("INFINITY", Float16.infinity)
expectParse("+infinity", Float16.infinity)
expectParse("-infinity", -Float16.infinity)
expectParseFails("i")
expectParseFails("in")
expectParseFails(" inf")
expectParseFails("- inf")
expectParseFails("--inf")
expectParseFails("-+inf")
expectParseFails("++inf")
expectParseFails("inf ")
expectParseFails("inx")
expectParseFails("-inx")
expectParseFails("infi")
expectParseFails("infin")
expectParseFails("infini")
expectParseFails("infinit")
expectParseFails("infinite")
expectParseFails("infinityandbeyond")
expectRoundTrip(Float16.infinity)
expectRoundTrip(-Float16.infinity)
}
tests.test("NaNs") {
// Note: Previous Swift runtime used libc strtof and then
// truncated to Float16, which is why some of these are
// wrong when testing previous runtimes.
expectRoundTrip(Float16.nan)
expectRoundTrip(-Float16.nan)
expectRoundTrip(Float16(nan:73, signaling:false))
expectRoundTrip(Float16(nan:73, signaling:true))
expectParse("nan", Float16.nan)
expectParse("NAN", Float16.nan)
expectParse("NaN", Float16.nan)
expectParse("-nan", -Float16.nan)
expectParse("nan()", Float16.nan)
expectParse("nan(0)", Float16.nan)
expectParse("nan(000000000000000000000000000000000000000)", Float16.nan)
expectParse("nan(0x00000000000000000000000000000000000000)", Float16.nan)
expectParse("nan(10)", Float16(nan:10, signaling:false))
expectParse("nan(0x10)", Float16(nan:16, signaling:false))
expectParse("nan(010)", Float16(nan:8, signaling:false))
expectParse("nan(9)", Float16(nan:9, signaling:false))
expectParse("nan(99)", Float16(nan:99, signaling:false))
expectParse("nan(255)", Float16(nan:255, signaling:false))
expectParse("nan(256)", Float16(nan:0, signaling:false))
expectParse("nan(511)", Float16(nan:255, signaling:false))
expectParse("nan(999999)", Float16(nan:63, signaling:false))
expectParse("nan(999999999999999)", Float16(nan:255, signaling:false))
expectParseFails("n")
expectParseFails("na")
expectParseFails("nann")
expectParseFails("nananananana")
}
tests.test("HexFloats") {
expectParseFails("0x")
expectParseFails("0x.")
expectParseFails("0x😀")
expectParseFails("0x1😀p2")
expectParseFails("0x1.07😀p2")
expectParseFails("0x1p😀")
expectParseFails("0x1p+😀")
expectParseFails("0x1p")
expectParseFails("0x1p+")
expectParseFails("0xp+7")
expectParseFails("0x.p1")
expectParseFails("0x..p1")
expectParseFails("0x0p1.0")
expectParse("0x0p0", 0.0)
expectParse("0x0p1", 0.0)
expectParse("-0x0p0", -0.0)
expectParse("0x0p999999999", 0.0)
expectParse("0x0.0p999999999", 0.0)
expectParse("0x.0p-999999999", 0.0)
expectParse("0x0p-999999999", 0.0)
expectParse("0x1p-25", 0.0)
expectParse("0x.000001", Float16.leastNonzeroMagnitude)
expectParse("0x1p-24", Float16.leastNonzeroMagnitude)
expectParse("0x1p-24", Float16(bitPattern:1))
expectParse("0x1p-23", Float16(bitPattern:2))
expectParse("0x1p-22", Float16(bitPattern:4))
expectParse("0x1p-21", Float16(bitPattern:8))
expectParse("0x1p-20", Float16(bitPattern:16))
// Test the tricky rounding of values between the largest subnormal and least normal
expectParse("0x0.ffcp-14", Float16.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x0.ffdffffp-14", Float16.leastNormalMagnitude.nextDown) // Just less than halfway
expectParse("0x0.ffep-14", Float16.leastNormalMagnitude) // Halfway
expectParse("0x0.ffe0000001p-14", Float16.leastNormalMagnitude) // Just above halfway
expectParse("0x1p-14", Float16.leastNormalMagnitude) // Smallest normal
expectParse("0x1.554p-2", 1.0/3.0)
expectParse("0x0.ffe", 0.99951172)
expectParse("0x0.ffeffff", 0.99951172) // Note: Old Swift implementation gets this wrong
expectParse("0x0.fff", 1.0)
expectParse("0x1p0", 1.0)
expectParse("0x1.002", 1.0) // Exact halfway between 1.0 and succ(1.0), rounds even
// Note: Old implementation gets this wrong due to double-rounding
expectParse("0x1.0020000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
1.00097656) // Teensy-tiny bit bigger than above, should round up
expectParse("0x1.00200000000001", 1.00097656) // Bigger than above
expectParse("0x1002000000000000000000001p-96", 1.00097656)
expectParse("0x0000000000000.000000000000000000000001002000000000000000000001p96", 1.00097656)
expectParse("0x1.004", 1.00097656)
expectParse("0x1p+1", 2.0)
expectParse("0x1p+0000000000000000000000000000000000001", 2.0)
expectParse("0x12", 18.0)
expectParse("0xab", 171.0)
expectParse("0x1p+10", 1024.0)
expectParse("0x1p+0000000000000000000000000010", 1024.0)
expectParse("0x1.920p1", Float16.pi)
expectParse("0xffe0", Float16.greatestFiniteMagnitude)
expectParse("0xffe00000000000.0000000000000000000000000000000000000000001p-40",
Float16.greatestFiniteMagnitude)
expectParse("0x1.ffcp+15", Float16.greatestFiniteMagnitude)
expectParse("0xffa0", 65440.0) // Exact (odd)
expectParse("0xffb0", 65472.0) // Rounds up
expectParse("0xffc0", 65472.0) // Exact (even)
expectParse("0xffd0", 65472.0) // Rounds down
expectParse("0xffe0", Float16.greatestFiniteMagnitude) // Exact (odd)
// Rationale for the assertions below:
// * Float16.greatestFiniteMagnitude has an odd significand
// * Let epsilon = the difference between Float16.greatestFiniteMagnitude and its immediate predecessor
// * Define a synthetic finite successor to Float16.gFM as Float16.gFM + epsilon
// * Assertion: the value above should round to infinity
// * Assertion: the value above should be treated as having an even significand
// * Conclusion: Exact halfway between Float16.gFM and lIM is the smallest magnitude that should round to infinity
// Note: Old Swift implementation gets these wrong
expectParse("0xffe0.00000001", Float16.greatestFiniteMagnitude)
expectParse("0xffe8.0", Float16.greatestFiniteMagnitude)
expectParse("0xffef.0", Float16.greatestFiniteMagnitude)
expectParse("0xffef.f", Float16.greatestFiniteMagnitude)
expectParse("0xffef.ff", Float16.greatestFiniteMagnitude)
expectParse("0xffef.ff8", Float16.greatestFiniteMagnitude)
expectParse("0xffef.ffc", Float16.greatestFiniteMagnitude)
expectParse("0xffef.fff", Float16.greatestFiniteMagnitude)
expectParse("0xffef.fffff", Float16.greatestFiniteMagnitude)
expectParse("0xffef.fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", Float16.greatestFiniteMagnitude)
expectParse("0xfff0.0", Float16.infinity) // "Rounds up" by rationale above
expectParse("0x10000.0", Float16.infinity) // .gFM + epsilon above
}
tests.test("Decimal Floats") {
expectParseFails(".")
expectParse("0.0", 0.0)
expectParse("0", 0.0)
expectParse("0.", 0.0)
expectParse(".0", 0.0)
expectParse("1", 1.0)
expectParse("2", 2.0)
expectParse("1e0", 1.0)
expectParse("3.7e1", 37.0)
expectParse("12.34e3", 12336.0)
expectParse("-00.0047e5", -470.0)
expectParse("2e0", 2.0)
expectParse("1e1", 10.0)
expectParse("7e1", 70.0)
expectParse("1e2", 100.0)
expectParse("1e3", 1000.0)
expectParse("1e4", 10000.0)
expectParse("1e5", Float16.infinity)
expectParse("1e6", Float16.infinity)
expectParse("1e7", Float16.infinity)
expectParse("1e9999999999999999999999999999999999", Float16.infinity)
expectParse("1e0000000000000000000000000000000001", 10.0)
expectParse("1", 1.0)
expectParse("1.0", 1.0)
expectParse("1.00000000", 1.0)
expectParse("2.0", 2.0)
expectParse("0.000001", 1e-6)
expectParse("0.0000001", 1e-7)
expectParse("0.00000001", 0.0)
expectParse("0.000000001", 0.0)
expectParse("0.0000000001", 0.0)
expectParse("0.00000000001", 0.0)
expectParse("0.000000000001", 0.0)
expectParse("0.0000000000001", 0.0)
expectParse("0.00000000000001", 0.0)
}
tests.test("Exhaustive Float16") {
for i in 0..<0xffff {
let f = Float16(bitPattern: UInt16(i))
let s = f.debugDescription
if !f.isNaN {
expectParse(s, f)
} else {
let r = Float16(Substring(s))!
expectTrue(r.isNaN)
}
}
}
runAllTests()

View File

@@ -0,0 +1,319 @@
// RUN: %target-run-simple-swift
// REQUIRES: executable_test
import StdlibUnittest
let tests = TestSuite("FloatingPointParsing")
fileprivate func expectRoundTrip(
_ value: Float32,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let text = value.debugDescription
let roundTrip = Float32(Substring(text))
expectNotNil(roundTrip, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let roundTrip {
if value.isNaN {
// We cannot in general guarantee perfect round-tripping for NaN values,
// but we can verify that printing/parsing a NaN does result in another
// NaN.
expectTrue(roundTrip.isNaN, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
} else {
expectEqual(roundTrip.bitPattern, value.bitPattern, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
}
fileprivate func expectParse(
_ input: String,
_ expected: Float32,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float32(Substring(input))
expectNotNil(parsed, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let parsed {
expectEqual(parsed.bitPattern, expected.bitPattern, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
func expectParseFails(
_ input: String,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float32(Substring(input))
expectNil(parsed, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
tests.test("Invalids") {
expectParseFails("")
expectParseFails(".")
expectParseFails("e0")
expectParseFails(".e0")
expectParseFails("1e+")
expectParseFails("-")
expectParseFails("+")
expectParseFails("&")
expectParseFails("+x")
expectParseFails("x")
}
tests.test("Infinities") {
expectParse("inf", Float32.infinity)
expectParse("+inf", Float32.infinity)
expectParse("-inf", -Float32.infinity)
expectParse("INF", Float32.infinity)
expectParse("InF", Float32.infinity)
expectParse("iNf", Float32.infinity)
expectParse("infinity", Float32.infinity)
expectParse("INFINITY", Float32.infinity)
expectParse("+infinity", Float32.infinity)
expectParse("-infinity", -Float32.infinity)
expectParseFails("i")
expectParseFails("in")
expectParseFails(" inf")
expectParseFails("- inf")
expectParseFails("--inf")
expectParseFails("-+inf")
expectParseFails("++inf")
expectParseFails("inf ")
expectParseFails("inx")
expectParseFails("-inx")
expectParseFails("infi")
expectParseFails("infin")
expectParseFails("infini")
expectParseFails("infinit")
expectParseFails("infinite")
expectParseFails("infinityandbeyond")
expectRoundTrip(Float32.infinity)
expectRoundTrip(-Float32.infinity)
}
tests.test("NaNs") {
// Note: Previous Swift runtime used libc strtof and then
// truncated to Float32, which is why some of these are
// wrong when testing previous runtimes.
expectRoundTrip(Float32.nan)
expectRoundTrip(-Float32.nan)
expectRoundTrip(Float32(nan:73, signaling:false))
expectRoundTrip(Float32(nan:73, signaling:true))
expectParse("nan", Float32.nan)
expectParse("NAN", Float32.nan)
expectParse("NaN", Float32.nan)
expectParse("-nan", -Float32.nan)
expectParse("nan()", Float32.nan)
expectParse("nan(0)", Float32.nan)
expectParse("nan(000000000000000000000000000000000000000)", Float32.nan)
expectParse("nan(0x00000000000000000000000000000000000000)", Float32.nan)
expectParse("nan(10)", Float32(nan:10, signaling:false))
expectParse("nan(0x10)", Float32(nan:16, signaling:false))
expectParse("nan(010)", Float32(nan:8, signaling:false))
expectParse("nan(9)", Float32(nan:9, signaling:false))
expectParse("nan(99)", Float32(nan:99, signaling:false))
expectParse("nan(255)", Float32(nan:255, signaling:false))
expectParse("nan(256)", Float32(nan:256, signaling:false))
expectParse("nan(511)", Float32(nan:511, signaling:false))
expectParse("nan(999999)", Float32(nan:999999, signaling:false))
expectParse("nan(999999999999999)", Float32(nan:0x67fff, signaling:false))
expectParse("nan(0xfffffffffffff)", Float32(nan:0x1fffff, signaling:false))
expectParseFails("n")
expectParseFails("na")
expectParseFails("nann")
expectParseFails("nananananana")
}
tests.test("HexFloats") {
expectParseFails("0x")
expectParseFails("0x.")
expectParseFails("0x😀")
expectParseFails("0x1😀p2")
expectParseFails("0x1.07😀p2")
expectParseFails("0x1p😀")
expectParseFails("0x1p+😀")
expectParseFails("0x1p")
expectParseFails("0x1p+")
expectParseFails("0xp+7")
expectParseFails("0x.p1")
expectParseFails("0x..p1")
expectParseFails("0x0p1.0")
expectParse("0x0p0", 0.0)
expectParse("0x0p1", 0.0)
expectParse("-0x0p0", -0.0)
expectParse("0x0p999999999", 0.0)
expectParse("0x0.0p999999999", 0.0)
expectParse("0x.0p-999999999", 0.0)
expectParse("0x0p-999999999", 0.0)
expectParse("0x.000001", 5.9604645e-08)
expectParse("0x1p-150", 0.0)
expectParse("0x1p-149", Float32.leastNonzeroMagnitude)
expectParse("0x1p-149", Float32(bitPattern:1))
expectParse("0x1p-148", Float32(bitPattern:2))
expectParse("0x1p-147", Float32(bitPattern:4))
expectParse("0x1p-146", Float32(bitPattern:8))
expectParse("0x1p-145", Float32(bitPattern:16))
// Test the tricky rounding of values between the largest subnormal and least normal
expectParse("0x1.fffffcp-127", Float32.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x0.fffffep-126", Float32.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x0.fffffefffffp-126", Float32.leastNormalMagnitude.nextDown) // Just less than halfway
expectParse("0x0.ffffffp-126", Float32.leastNormalMagnitude) // Halfway
expectParse("0x1.fffffep-127", Float32.leastNormalMagnitude) // Halfway
expectParse("0x0.ffffff0000000001p-126", Float32.leastNormalMagnitude) // Just above halfway
expectParse("0x1p-126", Float32.leastNormalMagnitude) // Smallest normal
expectParse("0x1.555556p-2", 1.0/3.0)
expectParse("0x0.ffffff", Float(1.0).nextDown) // Exactly
expectParse("0x0.ffffff8", 1.0) // Halfway
expectParse("0x1p0", 1.0)
expectParse("0x1.000001p0", 1.0) // Halfway, rounds even
expectParse("0x1.00000100000000000000000000000000000000000000000000001p0", Float(1.0).nextUp) // Halfway + epsilon
expectParse("0x1.000002p0", Float(1.0).nextUp) // Exactly
expectParse("0x1.00000200000000001", Float(1.0).nextUp) // Bigger than above
expectParse("0x1000002000000000000000000000001p-120", (Float(1.0)).nextUp)
expectParse("0x00000000.000000000000000000000000000001000002000000000000000000001p120", Float(1.0).nextUp)
expectParse("0x1p+1", 2.0)
expectParse("0x1p+0000000000000000000000000000000000001", 2.0)
expectParse("0x12", 18.0)
expectParse("0xab", 171.0)
expectParse("0x1p+10", 1024.0)
expectParse("0x1p+0000000000000000000000000010", 1024.0)
expectParse("0x1.921fb4p+1", Float32.pi)
// Rationale for the four assertions below:
// * Float32.greatestFiniteMagnitude has an odd significand
// * Let epsilon = the difference between Float32.greatestFiniteMagnitude and its immediate predecessor
// * Define a synthetic finite successor to Float32.gFM as Float32.gFM + epsilon
// * Assertion: the value above should round to infinity
// * Assertion: the value above should be treated as having an even significand
// * Conclusion: Exact halfway between Float32.gFM and lIM is the smallest magnitude that should round to infinity
expectParse("0x1.fffffep+127", Float32.greatestFiniteMagnitude) // Exact
expectParse("0x1.fffffefffffffffffffffffffffp+127", Float32.greatestFiniteMagnitude) // .gFM + less than 1/2 epsilon
expectParse("0x1.ffffffp+127", Float32.infinity) // .gFM + 1/2 epsilon
expectParse("0x2.000000p+127", Float32.infinity) // .gFM + epsilon above
expectParse("0x123456789abcdefp123456789", Float32.infinity)
}
tests.test("Decimal Floats") {
expectParse("9007199254740992.0", 9007199254740992.0)
expectParse("-9007199254740992.0", -9007199254740992.0)
expectParse("4503599627370496.0", 4503599627370496.0)
expectParse("7.888609052210118e-31", 7.888609052210118e-31)
expectParse("3.944304526105059e-31", 3.944304526105059e-31)
expectParse(".0", 0.0)
expectParse("0", 0.0)
expectParse("0.", 0.0)
expectParse("0.0", 0.0)
expectParse("000000000000000000000000000000", 0.0)
expectParse(".000000000000000000000000000000", 0.0)
expectParse("000000000000000000000000000000.0000000000000000000000000000", 0.0)
expectParse("1", 1.0)
expectParse("2", 2.0)
expectParse("1e0", 1.0)
expectParse("3.7e1", 37.0)
expectParse("12.34e3", 12340.0)
expectParse("-00.0047e5", -470.0)
expectParse("2e0", 2.0)
expectParse("1e1", 10.0)
expectParse("7e1", 70.0)
expectParse("1e2", 100.0)
expectParse("1e3", 1000.0)
expectParse("1e4", 10000.0)
expectParse("1e0000000000000000000000000000000001", 10.0)
expectParse("1", 1.0)
expectParse("1.0", 1.0)
expectParse("1.00000000", 1.0)
expectParse("2.0", 2.0)
expectParse("0.000001", 1e-6)
expectParse("0.0000001", 1e-7)
expectParse("0.00000001", 1e-8)
expectParse("0.000000001", 1e-9)
expectParse("0.0000000001", 1e-10)
expectParse("0.00000000001", 1e-11)
expectParse("0.000000000001", 1e-12)
expectParse("0.0000000000001", 1e-13)
expectParse("0.00000000000001", 1e-14)
expectParse("1e-45", Float32.leastNonzeroMagnitude)
// Exact decimal form of 2^-149 (which is exactly Float32.leastNonzeroMagnitude)
expectParse("0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125", Float32.leastNonzeroMagnitude)
// Exact decimal form of 2^-150 (halfway between Float32.lNM and 0)
// Ties round even, so this rounds down to zero
expectParse("0.000000000000000000000000000000000000000000000700649232162408535461864791644958065640130970938257885878534141944895541342930300743319094181060791015625", 0.0)
// Increment the last digit, this should round up
expectParse("0.000000000000000000000000000000000000000000000700649232162408535461864791644958065640130970938257885878534141944895541342930300743319094181060791015626", Float32.leastNonzeroMagnitude)
// Tiny tiny tiny bit larger than halfway between Float32.lNM and 0, so rounds up
expectParse("0.00000000000000000000000000000000000000000000070064923216240853546186479164495806564013097093825788587853414194489554134293030074331909418106079101562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", Float32.leastNonzeroMagnitude)
expectParse("00000000000000000000000000000000000000000000070064923216240853546186479164495806564013097093825788587853414194489554134293030074331909418106079101562500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001.0e-320", Float32.leastNonzeroMagnitude)
expectParse("11754942e-45", Float32.leastNormalMagnitude.nextDown)
expectParse("117549432e-46", Float32.leastNormalMagnitude)
expectParse("34028235e+31", Float32.greatestFiniteMagnitude)
expectParse("-34028235e+31", -Float32.greatestFiniteMagnitude)
expectParse("340282346638528859811704183484516925439", Float32.greatestFiniteMagnitude) // Exact - 1
expectParse("340282346638528859811704183484516925440", Float32.greatestFiniteMagnitude) // Exact
expectParse("340282346638528859811704183484516925441", Float32.greatestFiniteMagnitude) // Exact + 1
// 1 less than exact midpoint between gFM and gFM + 1 ULP
// (Largest integer that rounds to gFM)
expectParse("340282356779733661637539395458142568447", Float32.greatestFiniteMagnitude)
expectParse("340282356779733661637539395458142568447.99999999999999999999999999999999999999999999999999999", Float32.greatestFiniteMagnitude)
// Exact midpoint between gFM and gFM + 1 ULP
// (Rounds even to gFM + 1 ULP, which we treat as infinite
expectParse("340282356779733661637539395458142568448", Float32.infinity)
expectParse("340282356779733661637539395458142568448.000000000000000000000000000000000000000000000000", Float32.infinity)
expectParse("340282356779733661637539395458142568448.000000000000000000000000000000000000000000000001", Float32.infinity)
expectParse("3.4028235e+38", Float32.greatestFiniteMagnitude)
expectParse("3.4028236e+38", Float32.infinity)
expectParse("3.4028237e+38", Float32.infinity)
expectParse("3.402824e+38", Float32.infinity)
expectParse("3.40283e+38", Float32.infinity)
expectParse("3.4029e+38", Float32.infinity)
expectParse("3.403e+38", Float32.infinity)
expectParse("3.41e+38", Float32.infinity)
expectParse("3.5e+38", Float32.infinity)
expectParse("4e+38", Float32.infinity)
expectParse("1e45", Float32.infinity)
expectParse("1e309", Float32.infinity)
expectParse("1e9999999999999999999999999999999999", Float32.infinity)
expectParse("999999999999999999999999999999999999999.999999999999999999999999999", Float32.infinity)
expectParse("7674047411400702925974988342550565582448.117", Float32.infinity)
}
/*
// Verify round-trip correctness for every Float32 value.
// Only enable this locally!
tests.test("Exhaustive Float32") {
for i in 0..<0xffffffff {
let f = Float32(bitPattern: UInt32(i))
expectRoundTrip(f)
}
expectRoundTrip(Float32(bitPattern: 0xffffffff)
}
*/
/*
// Checking 100 million random floats takes only a fraction of a second on a
// release build, but is _PAINFULLY SLOW_ in debug builds, so only enable this
// locally!
tests.test("Random Float32") {
let blocks = 100_000
let blocksize = 1_000
for _ in 0..<blocks {
var raw = UInt32.random(in: 0...UInt32.max)
for _ in 0..<blocksize {
raw &+= 1
let d = Float32(bitPattern: raw)
expectRoundTrip(d)
}
}
}
*/
runAllTests()

View File

@@ -0,0 +1,314 @@
// RUN: %target-run-simple-swift
// REQUIRES: executable_test
import StdlibUnittest
let tests = TestSuite("FloatingPointParsing")
fileprivate func expectRoundTrip(
_ value: Float64,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let text = value.debugDescription
let roundTrip = Float64(Substring(text))
expectNotNil(roundTrip, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let roundTrip {
if value.isNaN {
// We cannot in general guarantee perfect round-tripping for NaN values,
// but we can verify that printing/parsing a NaN does result in another
// NaN.
expectTrue(roundTrip.isNaN, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
} else {
expectEqual(roundTrip.bitPattern, value.bitPattern, text, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
}
fileprivate func expectParse(
_ input: String,
_ expected: Float64,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float64(Substring(input))
let msg = "\(input) did not parse to \(expected)"
expectNotNil(parsed, msg, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
if let parsed {
expectEqual(parsed.bitPattern, expected.bitPattern, msg, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
}
func expectParseFails(
_ input: String,
stackTrace: SourceLocStack = SourceLocStack(),
showFrame: Bool = true,
file: String = #file, line: UInt = #line
) {
let parsed = Float64(Substring(input))
expectNil(parsed, stackTrace: stackTrace, showFrame: showFrame, file: file, line: line)
}
tests.test("Invalids") {
expectParseFails("")
expectParseFails(".")
expectParseFails("e0")
expectParseFails(".e0")
expectParseFails("1e+")
expectParseFails("-")
expectParseFails("+")
expectParseFails("&")
expectParseFails("+x")
expectParseFails("x")
}
tests.test("Infinities") {
expectParse("inf", Float64.infinity)
expectParse("+inf", Float64.infinity)
expectParse("-inf", -Float64.infinity)
expectParse("INF", Float64.infinity)
expectParse("InF", Float64.infinity)
expectParse("iNf", Float64.infinity)
expectParse("infinity", Float64.infinity)
expectParse("INFINITY", Float64.infinity)
expectParse("+infinity", Float64.infinity)
expectParse("-infinity", -Float64.infinity)
expectParseFails("i")
expectParseFails("in")
expectParseFails(" inf")
expectParseFails("- inf")
expectParseFails("--inf")
expectParseFails("-+inf")
expectParseFails("++inf")
expectParseFails("inf ")
expectParseFails("inx")
expectParseFails("-inx")
expectParseFails("infi")
expectParseFails("infin")
expectParseFails("infini")
expectParseFails("infinit")
expectParseFails("infinite")
expectParseFails("infinityandbeyond")
expectRoundTrip(Float64.infinity)
expectRoundTrip(-Float64.infinity)
}
tests.test("NaNs") {
// Note: Previous Swift runtime used libc strtof and then
// truncated to Float64, which is why some of these are
// wrong when testing previous runtimes.
expectRoundTrip(Float64.nan)
expectRoundTrip(-Float64.nan)
expectRoundTrip(Float64(nan:73, signaling:false))
expectRoundTrip(Float64(nan:73, signaling:true))
expectParse("nan", Float64.nan)
expectParse("NAN", Float64.nan)
expectParse("NaN", Float64.nan)
expectParse("-nan", -Float64.nan)
expectParse("nan()", Float64.nan)
expectParse("nan(0)", Float64.nan)
expectParse("nan(000000000000000000000000000000000000000)", Float64.nan)
expectParse("nan(0x00000000000000000000000000000000000000)", Float64.nan)
expectParse("nan(10)", Float64(nan:10, signaling:false))
expectParse("nan(0x10)", Float64(nan:16, signaling:false))
expectParse("nan(010)", Float64(nan:8, signaling:false))
expectParse("nan(9)", Float64(nan:9, signaling:false))
expectParse("nan(99)", Float64(nan:99, signaling:false))
expectParse("nan(255)", Float64(nan:255, signaling:false))
expectParse("nan(256)", Float64(nan:256, signaling:false))
expectParse("nan(511)", Float64(nan:511, signaling:false))
expectParse("nan(999999)", Float64(nan:999999, signaling:false))
expectParse("nan(999999999999999)", Float64(nan:0x38d7ea4c67fff, signaling:false))
expectParse("nan(0xfffffffffffff)", Float64(nan:0x3ffffffffffff, signaling:false))
expectParseFails("n")
expectParseFails("na")
expectParseFails("nann")
expectParseFails("nananananana")
}
tests.test("HexFloats") {
expectParseFails("0x")
expectParseFails("0x.")
expectParseFails("0x😀")
expectParseFails("0x1😀p2")
expectParseFails("0x1.07😀p2")
expectParseFails("0x1p😀")
expectParseFails("0x1p+😀")
expectParseFails("0x1p")
expectParseFails("0x1p+")
expectParseFails("0xp+7")
expectParseFails("0x.p1")
expectParseFails("0x..p1")
expectParseFails("0x0p1.0")
expectParse("0x0p0", 0.0)
expectParse("0x0p1", 0.0)
expectParse("-0x0p0", -0.0)
expectParse("0x0p999999999", 0.0)
expectParse("0x0.0p999999999", 0.0)
expectParse("0x.0p-999999999", 0.0)
expectParse("0x0p-999999999", 0.0)
expectParse("0x.000001", 0x0.000001p0)
expectParse("0x1p-1074", Float64.leastNonzeroMagnitude)
expectParse("0x1p-1074", Float64(bitPattern:1))
expectParse("0x1p-1073", Float64(bitPattern:2))
expectParse("0x1p-1072", Float64(bitPattern:4))
expectParse("0x1p-1071", Float64(bitPattern:8))
expectParse("0x1p-1070", Float64(bitPattern:16))
// Test the tricky rounding of values between the largest subnormal and least normal
expectParse("0x0.fffffffffffffp-1022", Float64.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x1.ffffffffffffep-1023", Float64.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x1.ffffffffffffefffffffffffffffffffffp-1023", Float64.leastNormalMagnitude.nextDown) // Largest subnormal
expectParse("0x1.fffffffffffffp-1023", Float64.leastNormalMagnitude) // Halfway
expectParse("0x1.fffffffffffff00000000000000001p-1023", Float64.leastNormalMagnitude) // just above Halfway
expectParse("0x1p-1022", Float64.leastNormalMagnitude) // Smallest normal
expectParse("0x1.5555555555555p-2", 1.0/3.0)
expectParse("0x0.fffffffffffff8", Float64(1.0).nextDown) // Exactly
expectParse("0x0.fffffffffffffc", 1.0) // Halfway
expectParse("0x1p0", 1.0)
expectParse("0x1.00000000000008p0", 1.0) // Halfway, rounds even
expectParse("0x1.0000000000000800000000000000000000000000000000000000000000001p0", Float64(1.0).nextUp) // Halfway + epsilon
expectParse("0x1.0000000000001p0", Float64(1.0).nextUp) // Exactly
expectParse("0x1.000000000000100000000001", Float64(1.0).nextUp) // Bigger than above
expectParse("0x1000000000000100000000000000001p-120", (Float64(1.0)).nextUp)
expectParse("0x00000000.0000000000000000000000000000010000000000001000000000000000000001p120", Float64(1.0).nextUp)
expectParse("0x1p+1", 2.0)
expectParse("0x1p+0000000000000000000000000000000000001", 2.0)
expectParse("0x12", 18.0)
expectParse("0xab", 171.0)
expectParse("0x1p+10", 1024.0)
expectParse("0x1p+0000000000000000000000000010", 1024.0)
expectParse("0x1.921fb54442d18p+1", Float64.pi)
// Rationale for the four assertions below:
// * Float64.greatestFiniteMagnitude has an odd significand
// * Let epsilon = the difference between Float64.greatestFiniteMagnitude and its immediate predecessor
// * Define a synthetic finite successor to Float64.gFM as Float64.gFM + epsilon
// * Assertion: the value above should round to infinity
// * Assertion: the value above should be treated as having an even significand
// * Conclusion: Exact halfway between Float64.gFM and lIM is the smallest magnitude that should round to infinity
expectParse("0x1.fffffffffffffp+1023", Float64.greatestFiniteMagnitude) // Exact
expectParse("0x1.fffffffffffff7fffffffffffffffffffffp+1023", Float64.greatestFiniteMagnitude) // .gFM + less than 1/2 epsilon
expectParse("0x1.fffffffffffff8p+1023", Float64.infinity) // .gFM + 1/2 epsilon
expectParse("0x2.0000000000000p+1023", Float64.infinity) // .gFM + epsilon above
expectParse("0x123456789abcdefp123456789", Float64.infinity)
}
tests.test("Decimal Floats") {
expectParse("9007199254740992.0", 9007199254740992.0)
expectParse("-9007199254740992.0", -9007199254740992.0)
expectParse("4503599627370496.0", 4503599627370496.0)
expectParse("7.888609052210118e-31", 7.888609052210118e-31)
expectParse("3.944304526105059e-31", 3.944304526105059e-31)
expectParse(".0", 0.0)
expectParse("0", 0.0)
expectParse("0.", 0.0)
expectParse("0.0", 0.0)
expectParse("000000000000000000000000000000", 0.0)
expectParse(".000000000000000000000000000000", 0.0)
expectParse("000000000000000000000000000000.0000000000000000000000000000", 0.0)
expectParse("1", 1.0)
expectParse("2", 2.0)
expectParse("1e0", 1.0)
expectParse("3.7e1", 37.0)
expectParse("12.34e3", 12340.0)
expectParse("-00.0047e5", -470.0)
expectParse("2e0", 2.0)
expectParse("1e1", 10.0)
expectParse("7e1", 70.0)
expectParse("1e2", 100.0)
expectParse("1e3", 1000.0)
expectParse("1e4", 10000.0)
expectParse("1e0000000000000000000000000000000001", 10.0)
expectParse("1", 1.0)
expectParse("1.0", 1.0)
expectParse("1.00000000", 1.0)
expectParse("2.0", 2.0)
expectParse("0.000001", 1e-6)
expectParse("0.0000001", 1e-7)
expectParse("0.00000001", 1e-8)
expectParse("0.000000001", 1e-9)
expectParse("0.0000000001", 1e-10)
expectParse("0.00000000001", 1e-11)
expectParse("0.000000000001", 1e-12)
expectParse("0.0000000000001", 1e-13)
expectParse("0.00000000000001", 1e-14)
expectParse("5e-324", Float64.leastNonzeroMagnitude)
// Exact decimal form of 2^-1074 (which is exactly Float64.leastNonzeroMagnitude)
expectParse("0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004940656458412465441765687928682213723650598026143247644255856825006755072702087518652998363616359923797965646954457177309266567103559397963987747960107818781263007131903114045278458171678489821036887186360569987307230500063874091535649843873124733972731696151400317153853980741262385655911710266585566867681870395603106249319452715914924553293054565444011274801297099995419319894090804165633245247571478690147267801593552386115501348035264934720193790268107107491703332226844753335720832431936092382893458368060106011506169809753078342277318329247904982524730776375927247874656084778203734469699533647017972677717585125660551199131504891101451037862738167250955837389733598993664809941164205702637090279242767544565229087538682506419718265533447265625", Float64.leastNonzeroMagnitude)
// Exact decimal form of 2^-1075 (halfway between Float64.lNM and 0)
// Ties round even, so this rounds down to zero
expectParse("0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125", 0.0)
// Increment the last digit, this should round up
expectParse("0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000024703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328126", Float64.leastNonzeroMagnitude)
// Even a teeny-tiny bit larger than 2^-1075 should round up
expectParse("0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002470328229206232720882843964341106861825299013071623822127928412503377536351043759326499181808179961898982823477228588654633283551779698981993873980053909390631503565951557022639229085839244910518443593180284993653615250031937045767824921936562366986365848075700158576926990370631192827955855133292783433840935197801553124659726357957462276646527282722005637400648549997709659947045402082816622623785739345073633900796776193057750674017632467360096895134053553745851666113422376667860416215968046191446729184030053005753084904876539171138659164623952491262365388187963623937328042389101867234849766823508986338858792562830275599565752445550725518931369083625477918694866799496832404970582102851318545139621383772282614543769341253209859132766723632812500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", Float64.leastNonzeroMagnitude)
expectParse("2.2250738585072009e-308", Float64.leastNormalMagnitude.nextDown)
expectParse("2.2250738585072014e-308", Float64.leastNormalMagnitude)
expectParse("1.7976931348623157e+308", Float64.greatestFiniteMagnitude)
expectParse("-1.7976931348623157e+308", -Float64.greatestFiniteMagnitude)
expectParse("179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858367", Float64.greatestFiniteMagnitude) // Exact - 1
expectParse("179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368", Float64.greatestFiniteMagnitude) // Exact
expectParse("179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858369", Float64.greatestFiniteMagnitude) // Exact + 1
// exact gFM + 1 ULP
expectParse("179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216", Float64.infinity)
// 1 less than exact midpoint between gFM and gFM + 1 ULP
// (Largest integer that rounds to gFM)
expectParse("179769313486231580793728971405303415079934132710037826936173778980444968292764750946649017977587207096330286416692887910946555547851940402630657488671505820681908902000708383676273854845817711531764475730270069855571366959622842914819860834936475292719074168444365510704342711559699508093042880177904174497791", Float64.greatestFiniteMagnitude)
// Even closer to (but still less than) the exact midpoint
expectParse("179769313486231580793728971405303415079934132710037826936173778980444968292764750946649017977587207096330286416692887910946555547851940402630657488671505820681908902000708383676273854845817711531764475730270069855571366959622842914819860834936475292719074168444365510704342711559699508093042880177904174497791.99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", Float64.greatestFiniteMagnitude)
// Exact midpoint between gFM and gFM + 1 ULP
// (Rounds even to gFM + 1 ULP, which we treat as infinite
expectParse("179769313486231580793728971405303415079934132710037826936173778980444968292764750946649017977587207096330286416692887910946555547851940402630657488671505820681908902000708383676273854845817711531764475730270069855571366959622842914819860834936475292719074168444365510704342711559699508093042880177904174497792", Float64.infinity)
expectParse("1.7976931348623157e+308", Float64.greatestFiniteMagnitude)
expectParse("1.7976931348623159e+308", Float64.infinity)
expectParse("1.797693134862316e+308", Float64.infinity)
expectParse("1.79769313486232e+308", Float64.infinity)
expectParse("1.79769313487e+308", Float64.infinity)
expectParse("1.79769314e+308", Float64.infinity)
expectParse("1.7977e+308", Float64.infinity)
expectParse("1.798e+308", Float64.infinity)
expectParse("1.8e+308", Float64.infinity)
expectParse("2e+308", Float64.infinity)
expectParse("1e309", Float64.infinity)
expectParse("1e9999999999999999999999999999999999", Float64.infinity)
expectParse("999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999.999999999999999999999999999", Float64.infinity)
}
/*
// Checking 100 million random doubles takes only a fraction of a second on a
// release build, but is _PAINFULLY SLOW_ in debug builds, so only enable this
// locally!
tests.test("Random Float64") {
let blocks = 100_000
let blocksize = 1_000
for _ in 0..<blocks {
var raw = UInt64.random(in: 0...UInt64.max)
for _ in 0..<blocksize {
raw &+= 1
let d = Float64(bitPattern: raw)
expectRoundTrip(d)
}
}
}
*/
runAllTests()