[stdlib] Manually propagate floating point documentation

This commit is contained in:
Nate Cook
2017-07-27 11:46:16 -05:00
parent 311e1dc7b0
commit beeb816520
2 changed files with 883 additions and 1 deletions

View File

@@ -1596,10 +1596,48 @@ public protocol BinaryFloatingPoint: FloatingPoint, ExpressibleByFloatLiteral {
extension FloatingPoint {
/// The unit in the last place of 1.0.
///
/// The positive difference between 1.0 and the next greater representable
/// number. The `ulpOfOne` constant corresponds to the C macros
/// `FLT_EPSILON`, `DBL_EPSILON`, and others with a similar purpose.
public static var ulpOfOne: Self {
return Self(1).ulp
}
/// Returns this value rounded to an integral value using the specified
/// rounding rule.
///
/// The following example rounds a value using four different rounding rules:
///
/// let x = 6.5
///
/// // Equivalent to the C 'round' function:
/// print(x.rounded(.toNearestOrAwayFromZero))
/// // Prints "7.0"
///
/// // Equivalent to the C 'trunc' function:
/// print(x.rounded(.towardZero))
/// // Prints "6.0"
///
/// // Equivalent to the C 'ceil' function:
/// print(x.rounded(.up))
/// // Prints "7.0"
///
/// // Equivalent to the C 'floor' function:
/// print(x.rounded(.down))
/// // Prints "6.0"
///
/// For more information about the available rounding rules, see the
/// `FloatingPointRoundingRule` enumeration. To round a value using the
/// default "schoolbook rounding", you can use the shorter `rounded()`
/// method instead.
///
/// print(x.rounded())
/// // Prints "7.0"
///
/// - Parameter rule: The rounding rule to use.
/// - Returns: The integral value found by rounding using `rule`.
@_transparent
public func rounded(_ rule: FloatingPointRoundingRule) -> Self {
var lhs = self
@@ -1658,11 +1696,52 @@ extension FloatingPoint {
round(.toNearestOrAwayFromZero)
}
/// The greatest representable value that compares less than this value.
///
/// For any finite value `x`, `x.nextDown` is less than `x`. For `nan` or
/// `-infinity`, `x.nextDown` is `x` itself. The following special cases
/// also apply:
///
/// - If `x` is `infinity`, then `x.nextDown` is `greatestFiniteMagnitude`.
/// - If `x` is `leastNonzeroMagnitude`, then `x.nextDown` is `0.0`.
/// - If `x` is zero, then `x.nextDown` is `-leastNonzeroMagnitude`.
/// - If `x` is `-greatestFiniteMagnitude`, then `x.nextDown` is `-infinity`.
@_transparent
public var nextDown: Self {
return -(-self).nextUp
}
/// Returns the remainder of this value divided by the given value using
/// truncating division.
///
/// Performing truncating division with floating-point values results in a
/// truncated integer quotient and a remainder. For values `x` and `y` and
/// their truncated integer quotient `q`, the remainder `r` satisfies
/// `x == y * q + r`.
///
/// The following example calculates the truncating remainder of dividing
/// 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.towardZero)
/// // q == 11.0
/// let r = x.truncatingRemainder(dividingBy: 0.75)
/// // r == 0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are both finite numbers, the truncating
/// remainder has the same sign as this value and is strictly smaller in
/// magnitude than `other`. The `truncatingRemainder(dividingBy:)` method
/// is always exact.
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other` using
/// truncating division.
@_transparent
public func truncatingRemainder(dividingBy other: Self) -> Self {
var lhs = self
@@ -1670,6 +1749,38 @@ extension FloatingPoint {
return lhs
}
/// Returns the remainder of this value divided by the given value.
///
/// For two finite values `x` and `y`, the remainder `r` of dividing `x` by
/// `y` satisfies `x == y * q + r`, where `q` is the integer nearest to
/// `x / y`. If `x / y` is exactly halfway between two integers, `q` is
/// chosen to be even. Note that `q` is *not* `x / y` computed in
/// floating-point arithmetic, and that `q` may not be representable in any
/// available integer type.
///
/// The following example calculates the remainder of dividing 8.625 by 0.75:
///
/// let x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.toNearestOrEven)
/// // q == 12.0
/// let r = x.remainder(dividingBy: 0.75)
/// // r == -0.375
///
/// let x1 = 0.75 * q + r
/// // x1 == 8.625
///
/// If this value and `other` are finite numbers, the remainder is in the
/// closed range `-abs(other / 2)...abs(other / 2)`. The
/// `remainder(dividingBy:)` method is always exact. This method implements
/// the remainder operation defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to use when dividing this value.
/// - Returns: The remainder of this value divided by `other`.
@_transparent
public func remainder(dividingBy other: Self) -> Self {
var lhs = self
@@ -1677,6 +1788,20 @@ extension FloatingPoint {
return lhs
}
/// Returns the square root of the value, rounded to a representable value.
///
/// The following example declares a function that calculates the length of
/// the hypotenuse of a right triangle given its two perpendicular sides.
///
/// func hypotenuse(_ a: Double, _ b: Double) -> Double {
/// return (a * a + b * b).squareRoot()
/// }
///
/// let (dx, dy) = (3.0, 4.0)
/// let distance = hypotenuse(dx, dy)
/// // distance == 5.0
///
/// - Returns: The square root of the value.
@_transparent
public func squareRoot( ) -> Self {
var lhs = self
@@ -1684,6 +1809,19 @@ extension FloatingPoint {
return lhs
}
/// Returns the result of adding the product of the two given values to this
/// value, computed without intermediate rounding.
///
/// This method is equivalent to the C `fma` function and implements the
/// `fusedMultiplyAdd` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - lhs: One of the values to multiply before adding to this value.
/// - rhs: The other value to multiply.
/// - Returns: The product of `lhs` and `rhs`, added to this value.
@_transparent
public func addingProduct(_ lhs: Self, _ rhs: Self) -> Self {
var addend = self
@@ -1691,6 +1829,33 @@ extension FloatingPoint {
return addend
}
/// Returns the lesser of the two given values.
///
/// This method returns the minimum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `minimum(x, y)` is `x` if `x <= y`, `y` if `y < x`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.minimum(10.0, -25.0)
/// // -25.0
/// Double.minimum(10.0, .nan)
/// // 10.0
/// Double.minimum(.nan, -25.0)
/// // -25.0
/// Double.minimum(.nan, .nan)
/// // nan
///
/// The `minimum` method implements the `minNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The minimum of `x` and `y`, or whichever is a number if the
/// other is NaN.
public static func minimum(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
@@ -1700,6 +1865,33 @@ extension FloatingPoint {
return y
}
/// Returns the greater of the two given values.
///
/// This method returns the maximum of two values, preserving order and
/// eliminating NaN when possible. For two values `x` and `y`, the result of
/// `maximum(x, y)` is `x` if `x > y`, `y` if `x <= y`, or whichever of `x`
/// or `y` is a number if the other is a quiet NaN. If both `x` and `y` are
/// NaN, or either `x` or `y` is a signaling NaN, the result is NaN.
///
/// Double.maximum(10.0, -25.0)
/// // 10.0
/// Double.maximum(10.0, .nan)
/// // 10.0
/// Double.maximum(.nan, -25.0)
/// // -25.0
/// Double.maximum(.nan, .nan)
/// // nan
///
/// The `maximum` method implements the `maxNum` operation defined by the
/// [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: The greater of `x` and `y`, or whichever is a number if the
/// other is NaN.
public static func maximum(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
@@ -1709,6 +1901,35 @@ extension FloatingPoint {
return y
}
/// Returns the value with lesser magnitude.
///
/// This method returns the value with lesser magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `minimumMagnitude(x, y)` is `x` if
/// `x.magnitude <= y.magnitude`, `y` if `y.magnitude < x.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.minimumMagnitude(10.0, -25.0)
/// // 10.0
/// Double.minimumMagnitude(10.0, .nan)
/// // 10.0
/// Double.minimumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.minimumMagnitude(.nan, .nan)
/// // nan
///
/// The `minimumMagnitude` method implements the `minNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has lesser magnitude, or whichever is
/// a number if the other is NaN.
public static func minimumMagnitude(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
@@ -1718,6 +1939,35 @@ extension FloatingPoint {
return y
}
/// Returns the value with greater magnitude.
///
/// This method returns the value with greater magnitude of the two given
/// values, preserving order and eliminating NaN when possible. For two
/// values `x` and `y`, the result of `maximumMagnitude(x, y)` is `x` if
/// `x.magnitude > y.magnitude`, `y` if `x.magnitude <= y.magnitude`, or
/// whichever of `x` or `y` is a number if the other is a quiet NaN. If both
/// `x` and `y` are NaN, or either `x` or `y` is a signaling NaN, the result
/// is NaN.
///
/// Double.maximumMagnitude(10.0, -25.0)
/// // -25.0
/// Double.maximumMagnitude(10.0, .nan)
/// // 10.0
/// Double.maximumMagnitude(.nan, -25.0)
/// // -25.0
/// Double.maximumMagnitude(.nan, .nan)
/// // nan
///
/// The `maximumMagnitude` method implements the `maxNumMag` operation
/// defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - x: A floating-point value.
/// - y: Another floating-point value.
/// - Returns: Whichever of `x` or `y` has greater magnitude, or whichever is
/// a number if the other is NaN.
public static func maximumMagnitude(_ x: Self, _ y: Self) -> Self {
if x.isSignalingNaN || y.isSignalingNaN {
// Produce a quiet NaN matching platform arithmetic behavior.
@@ -1727,6 +1977,12 @@ extension FloatingPoint {
return y
}
/// The classification of this value.
///
/// A value's `floatingPointClass` property describes its "class" as
/// described by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public var floatingPointClass: FloatingPointClassification {
if isSignalingNaN { return .signalingNaN }
if isNaN { return .quietNaN }
@@ -1748,12 +2004,55 @@ extension BinaryFloatingPoint {
/// let magnitude = x.significand * F.radix ** x.exponent
public static var radix: Int { return 2 }
/// Creates a new floating-point value using the sign of one value and the
/// magnitude of another.
///
/// The following example uses this initializer to create a new `Double`
/// instance with the sign of `a` and the magnitude of `b`:
///
/// let a = -21.5
/// let b = 305.15
/// let c = Double(signOf: a, magnitudeOf: b)
/// print(c)
/// // Prints "-305.15"
///
/// This initializer implements the IEEE 754 `copysign` operation.
///
/// - Parameters:
/// - signOf: A value from which to use the sign. The result of the
/// initializer has the same sign as `signOf`.
/// - magnitudeOf: A value from which to use the magnitude. The result of
/// the initializer has the same magnitude as `magnitudeOf`.
public init(signOf: Self, magnitudeOf: Self) {
self.init(sign: signOf.sign,
exponentBitPattern: magnitudeOf.exponentBitPattern,
significandBitPattern: magnitudeOf.significandBitPattern)
}
/// Returns a Boolean value indicating whether this instance should precede the
/// given value in an ascending sort.
///
/// This relation is a refinement of the less-than-or-equal-to operator
/// (`<=`) that provides a total order on all values of the type, including
/// noncanonical encodings, signed zeros, and NaNs. Because it is used much
/// less frequently than the usual comparisons, there is no operator form of
/// this relation.
///
/// The following example uses `isTotallyOrdered(below:)` to sort an array of
/// floating-point values, including some that are NaN:
///
/// var numbers = [2.5, 21.25, 3.0, .nan, -9.5]
/// numbers.sort { $0.isTotallyOrdered(below: $1) }
/// // numbers == [-9.5, 2.5, 3.0, 21.25, nan]
///
/// The `isTotallyOrdered(belowOrEqualTo:)` method implements the total order
/// relation as defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: A floating-point value to compare to this value.
/// - Returns: `true` if this value is ordered below `other` in a total
/// ordering of the floating-point type; otherwise, `false`.
public func isTotallyOrdered(belowOrEqualTo other: Self) -> Bool {
// Quick return when possible.
if self < other { return true }

View File

@@ -107,12 +107,43 @@ extension ${Self}: BinaryFloatingPoint {
public typealias Exponent = Int
public typealias RawSignificand = ${RawSignificand}
/// The number of bits used to represent the type's exponent.
///
/// A binary floating-point type's `exponentBitCount` imposes a limit on the
/// range of the exponent for normal, finite values. The *exponent bias* of
/// a type `F` can be calculated as the following, where `**` is
/// exponentiation:
///
/// let bias = 2 ** (F.exponentBitCount - 1) - 1
///
/// The least normal exponent for values of the type `F` is `1 - bias`, and
/// the largest finite exponent is `bias`. An all-zeros exponent is reserved
/// for subnormals and zeros, and an all-ones exponent is reserved for
/// infinity and NaN.
///
/// For example, the `Float` type has an `exponentBitCount` of 8, which gives
/// an exponent bias of `127` by the calculation above.
///
/// let bias = 2 ** (Float.exponentBitCount - 1) - 1
/// // bias == 127
/// print(Float.greatestFiniteMagnitude.exponent)
/// // Prints "127"
/// print(Float.leastNormalMagnitude.exponent)
/// // Prints "-126"
public static var exponentBitCount: Int {
return ${ExponentBitCount}
}
%if bits == 80:
/// The available number of fractional significand bits.
///
/// For fixed-width floating-point types, this is the actual number of
/// fractional significand bits.
///
/// For extensible floating-point types, `significandBitCount` should be the
/// maximum allowed significand width (without counting any leading integral
/// bit of the significand). If there is no upper limit, then
/// `significandBitCount` should be `Int.max`.
%if bits == 80:
///
/// `Float80.significandBitCount` is 63, even though 64 bits are used to
/// store the significand in the memory representation of a `Float80`
@@ -176,6 +207,19 @@ extension ${Self}: BinaryFloatingPoint {
self.init(_bits: Builtin.bitcast_Int${bits}_FPIEEE${bits}(bitPattern._value))
}
/// The sign of the floating-point value.
///
/// The `sign` property is `.minus` if the value's signbit is set, and
/// `.plus` otherwise. For example:
///
/// let x = -33.375
/// // x.sign == .minus
///
/// Do not use this property to check whether a floating point value is
/// negative. For a value `x`, the comparison `x.sign == .minus` is not
/// necessarily the same as `x < 0`. In particular, `x.sign == .minus` if
/// `x` is -0, and while `x < 0` is always `false` if `x` is NaN, `x.sign`
/// could be either `.plus` or `.minus`.
public var sign: FloatingPointSign {
let shift = ${Self}.significandBitCount + ${Self}.exponentBitCount
return FloatingPointSign(rawValue: Int(bitPattern &>> ${RawSignificand}(shift)))!
@@ -184,15 +228,37 @@ extension ${Self}: BinaryFloatingPoint {
@available(*, unavailable, renamed: "sign")
public var isSignMinus: Bool { Builtin.unreachable() }
/// The raw encoding of the value's exponent field.
///
/// This value is unadjusted by the type's exponent bias.
public var exponentBitPattern: UInt {
return UInt(bitPattern &>> UInt${bits}(${Self}.significandBitCount)) &
${Self}._infinityExponent
}
/// The raw encoding of the value's significand field.
///
/// The `significandBitPattern` property does not include the leading
/// integral bit of the significand, even for types like `Float80` that
/// store it explicitly.
public var significandBitPattern: ${RawSignificand} {
return ${RawSignificand}(bitPattern) & ${Self}._significandMask
}
/// Creates a new instance from the specified sign and bit patterns.
///
/// The values passed as `exponentBitPattern` and `significandBitPattern` are
/// interpreted in the binary interchange format defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - sign: The sign of the new value.
/// - exponentBitPattern: The bit pattern to use for the exponent field of
/// the new value.
/// - significandBitPattern: The bit pattern to use for the significand
/// field of the new value.
public init(sign: FloatingPointSign,
exponentBitPattern: UInt,
significandBitPattern: ${RawSignificand}) {
@@ -208,6 +274,16 @@ extension ${Self}: BinaryFloatingPoint {
significand)
}
/// A Boolean value indicating whether the instance's representation is in
/// the canonical form.
///
/// The [IEEE 754 specification][spec] defines a *canonical*, or preferred,
/// encoding of a floating-point value's representation. Every `Float` or
/// `Double` value is canonical, but noncanonical values of the `Float80`
/// type exist, and noncanonical values may exist for other types that
/// conform to the `FloatingPoint` protocol.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public var isCanonical: Bool {
return true
}
@@ -231,6 +307,19 @@ extension ${Self}: BinaryFloatingPoint {
return unsafeBitCast(self, to: _Float80Representation.self)
}
/// The sign of the floating-point value.
///
/// The `sign` property is `.minus` if the value's signbit is set, and
/// `.plus` otherwise. For example:
///
/// let x = -33.375
/// // x.sign == .minus
///
/// Do not use this property to check whether a floating point value is
/// negative. For a value `x`, the comparison `x.sign == .minus` is not
/// necessarily the same as `x < 0`. In particular, `x.sign == .minus` if
/// `x` is -0, and while `x < 0` is always `false` if `x` is NaN, `x.sign`
/// could be either `.plus` or `.minus`.
public var sign: FloatingPointSign {
return _representation.sign
}
@@ -239,6 +328,9 @@ extension ${Self}: BinaryFloatingPoint {
@inline(__always) get { return 1 &<< 63 }
}
/// The raw encoding of the value's exponent field.
///
/// This value is unadjusted by the type's exponent bias.
public var exponentBitPattern: UInt {
let provisional = _representation.exponentBitPattern
if provisional == 0 {
@@ -262,6 +354,11 @@ extension ${Self}: BinaryFloatingPoint {
return provisional
}
/// The raw encoding of the value's significand field.
///
/// The `significandBitPattern` property does not include the leading
/// integral bit of the significand, even for types like `Float80` that
/// store it explicitly.
public var significandBitPattern: UInt64 {
if _representation.exponentBitPattern > 0 &&
_representation.explicitSignificand < Float80._explicitBitMask {
@@ -275,6 +372,20 @@ extension ${Self}: BinaryFloatingPoint {
return _representation.explicitSignificand & Float80._significandMask
}
/// Creates a new instance from the specified sign and bit patterns.
///
/// The values passed as `exponentBitPattern` and `significandBitPattern` are
/// interpreted in the binary interchange format defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - sign: The sign of the new value.
/// - exponentBitPattern: The bit pattern to use for the exponent field of
/// the new value.
/// - significandBitPattern: The bit pattern to use for the significand
/// field of the new value.
public init(sign: FloatingPointSign,
exponentBitPattern: UInt,
significandBitPattern: UInt64) {
@@ -287,6 +398,16 @@ extension ${Self}: BinaryFloatingPoint {
self = unsafeBitCast(rep, to: Float80.self)
}
/// A Boolean value indicating whether the instance's representation is in
/// the canonical form.
///
/// The [IEEE 754 specification][spec] defines a *canonical*, or preferred,
/// encoding of a floating-point value's representation. Every `Float` or
/// `Double` value is canonical, but noncanonical values of the `Float80`
/// type exist, and noncanonical values may exist for other types that
/// conform to the `FloatingPoint` protocol.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public var isCanonical: Bool {
if exponentBitPattern == 0 {
// If exponent field is zero, canonical numbers have the explicit
@@ -299,16 +420,60 @@ extension ${Self}: BinaryFloatingPoint {
}
%end
/// Positive infinity.
///
/// Infinity compares greater than all finite numbers and equal to other
/// infinite values.
///
/// let x = Double.greatestFiniteMagnitude
/// let y = x * 2
/// // y == Double.infinity
/// // y > x
public static var infinity: ${Self} {
return ${Self}(sign: .plus,
exponentBitPattern: _infinityExponent,
significandBitPattern: 0)
}
/// A quiet NaN ("not a number").
///
/// A NaN compares not equal, not greater than, and not less than every
/// value, including itself. Passing a NaN to an operation generally results
/// in NaN.
///
/// let x = 1.21
/// // x > Double.nan == false
/// // x < Double.nan == false
/// // x == Double.nan == false
///
/// Because a NaN always compares not equal to itself, to test whether a
/// floating-point value is NaN, use its `isNaN` property instead of the
/// equal-to operator (`==`). In the following example, `y` is NaN.
///
/// let y = x + Double.nan
/// print(y == Double.nan)
/// // Prints "false"
/// print(y.isNaN)
/// // Prints "true"
public static var nan: ${Self} {
return ${Self}(nan: 0, signaling: false)
}
/// A signaling NaN ("not a number").
///
/// The default IEEE 754 behavior of operations involving a signaling NaN is
/// to raise the Invalid flag in the floating-point environment and return a
/// quiet NaN.
///
/// Operations on types conforming to the `FloatingPoint` protocol should
/// support this behavior, but they might also support other options. For
/// example, it would be reasonable to implement alternative operations in
/// which operating on a signaling NaN triggers a runtime error or results
/// in a diagnostic for debugging purposes. Types that implement alternative
/// behaviors for a signaling NaN must document the departure.
///
/// Other than these signaling operations, a signaling NaN behaves in the
/// same manner as a quiet NaN.
public static var signalingNaN: ${Self} {
return ${Self}(nan: 0, signaling: true)
}
@@ -316,12 +481,29 @@ extension ${Self}: BinaryFloatingPoint {
@available(*, unavailable, renamed: "nan")
public static var quietNaN: ${Self} { Builtin.unreachable()}
/// The greatest finite number representable by this type.
///
/// This value compares greater than or equal to all finite numbers, but less
/// than `infinity`.
///
/// This value corresponds to type-specific C macros such as `FLT_MAX` and
/// `DBL_MAX`. The naming of those macros is slightly misleading, because
/// `infinity` is greater than this value.
public static var greatestFiniteMagnitude: ${Self} {
return ${Self}(sign: .plus,
exponentBitPattern: _infinityExponent - 1,
significandBitPattern: _significandMask)
}
/// The mathematical constant pi.
///
/// This value should be rounded toward zero to keep user computations with
/// angles from inadvertently ending up in the wrong quadrant. A type that
/// conforms to the `FloatingPoint` protocol provides the value for `pi` at
/// its best possible precision.
///
/// print(Double.pi)
/// // Prints "3.14159265358979"
public static var pi: ${Self} {
%if bits == 32:
// Note: this is not the correctly rounded (to nearest) value of pi,
@@ -337,6 +519,25 @@ extension ${Self}: BinaryFloatingPoint {
%end
}
/// The unit in the last place of this value.
///
/// This is the unit of the least significant digit in this value's
/// significand. For most numbers `x`, this is the difference between `x`
/// and the next greater (in magnitude) representable number. There are some
/// edge cases to be aware of:
///
/// - If `x` is not a finite number, then `x.ulp` is NaN.
/// - If `x` is very small in magnitude, then `x.ulp` may be a subnormal
/// number. If a type does not support subnormals, `x.ulp` may be rounded
/// to zero.
/// - `greatestFiniteMagnitude.ulp` is a finite number, even though the next
/// greater representable value is `infinity`.
///
/// This quantity, or a related quantity, is sometimes called *epsilon* or
/// *machine epsilon.* Avoid that name because it has different meanings in
/// different languages, which can lead to confusion, and because it
/// suggests that it is a good tolerance to use for comparisons, which it
/// almost never is.
public var ulp: ${Self} {
if !isFinite { return ${Self}.nan }
if exponentBitPattern > UInt(${Self}.significandBitCount) {
@@ -360,12 +561,27 @@ extension ${Self}: BinaryFloatingPoint {
significandBitPattern: 1)
}
/// The least positive normal number.
///
/// This value compares less than or equal to all positive normal numbers.
/// There may be smaller positive numbers, but they are *subnormal*, meaning
/// that they are represented with less precision than normal numbers.
///
/// This value corresponds to type-specific C macros such as `FLT_MIN` and
/// `DBL_MIN`. The naming of those macros is slightly misleading, because
/// subnormals, zeros, and negative numbers are smaller than this value.
public static var leastNormalMagnitude: ${Self} {
return ${Self}(sign: .plus,
exponentBitPattern: 1,
significandBitPattern: 0)
}
/// The least positive number.
///
/// This value compares less than or equal to all positive numbers, but
/// greater than zero. If the type supports subnormal values,
/// `leastNonzeroMagnitude` is smaller than `leastNormalMagnitude`;
/// otherwise they are equal.
public static var leastNonzeroMagnitude: ${Self} {
#if arch(arm)
return leastNormalMagnitude
@@ -376,6 +592,32 @@ extension ${Self}: BinaryFloatingPoint {
#endif
}
/// The exponent of the floating-point value.
///
/// The *exponent* of a floating-point value is the integer part of the
/// logarithm of the value's magnitude. For a value `x` of a floating-point
/// type `F`, the magnitude can be calculated as the following, where `**`
/// is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
///
/// In the next example, `y` has a value of `21.5`, which is encoded as
/// `1.34375 * 2 ** 4`. The significand of `y` is therefore 1.34375.
///
/// let y: Double = 21.5
/// // y.significand == 1.34375
/// // y.exponent == 4
/// // Double.radix == 2
///
/// The `exponent` property has the following edge cases:
///
/// - If `x` is zero, then `x.exponent` is `Int.min`.
/// - If `x` is +/-infinity or NaN, then `x.exponent` is `Int.max`
///
/// This property implements the `logB` operation defined by the [IEEE 754
/// specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public var exponent: Int {
if !isFinite { return .max }
if isZero { return .min }
@@ -385,6 +627,34 @@ extension ${Self}: BinaryFloatingPoint {
return provisional + 1 - Int(shift)
}
/// The significand of the floating-point value.
///
/// The magnitude of a floating-point value `x` of type `F` can be calculated
/// by using the following formula, where `**` is exponentiation:
///
/// let magnitude = x.significand * F.radix ** x.exponent
///
/// In the next example, `y` has a value of `21.5`, which is encoded as
/// `1.34375 * 2 ** 4`. The significand of `y` is therefore 1.34375.
///
/// let y: Double = 21.5
/// // y.significand == 1.34375
/// // y.exponent == 4
/// // Double.radix == 2
///
/// If a type's radix is 2, then for finite nonzero numbers, the significand
/// is in the range `1.0 ..< 2.0`. For other values of `x`, `x.significand`
/// is defined as follows:
///
/// - If `x` is zero, then `x.significand` is 0.0.
/// - If `x` is infinity, then `x.significand` is 1.0.
/// - If `x` is NaN, then `x.significand` is NaN.
/// - Note: The significand is frequently also called the *mantissa*, but
/// significand is the preferred terminology in the [IEEE 754
/// specification][spec], to allay confusion with the use of mantissa for
/// the fractional part of a logarithm.
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
public var significand: ${Self} {
if isNaN { return self }
if isNormal {
@@ -404,6 +674,49 @@ extension ${Self}: BinaryFloatingPoint {
significandBitPattern: 0)
}
/// Creates a new value from the given sign, exponent, and significand.
///
/// The following example uses this initializer to create a new `Double`
/// instance. `Double` is a binary floating-point type that has a radix of
/// `2`.
///
/// let x = Double(sign: .plus, exponent: -2, significand: 1.5)
/// // x == 0.375
///
/// This initializer is equivalent to the following calculation, where `**`
/// is exponentiation, computed as if by a single, correctly rounded,
/// floating-point operation:
///
/// let sign: FloatingPointSign = .plus
/// let exponent = -2
/// let significand = 1.5
/// let y = (sign == .minus ? -1 : 1) * significand * Double.radix ** exponent
/// // y == 0.375
///
/// As with any basic operation, if this value is outside the representable
/// range of the type, overflow or underflow occurs, and zero, a subnormal
/// value, or infinity may result. In addition, there are two other edge
/// cases:
///
/// - If the value you pass to `significand` is zero or infinite, the result
/// is zero or infinite, regardless of the value of `exponent`.
/// - If the value you pass to `significand` is NaN, the result is NaN.
///
/// For any floating-point value `x` of type `F`, the result of the following
/// is equal to `x`, with the distinction that the result is canonicalized
/// if `x` is in a noncanonical encoding:
///
/// let x0 = F(sign: x.sign, exponent: x.exponent, significand: x.significand)
///
/// This initializer implements the `scaleB` operation defined by the [IEEE
/// 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameters:
/// - sign: The sign to use for the new value.
/// - exponent: The new value's exponent.
/// - significand: The new value's significand.
public init(sign: FloatingPointSign, exponent: Int, significand: ${Self}) {
var result = significand
if sign == .minus { result = -result }
@@ -464,6 +777,16 @@ extension ${Self}: BinaryFloatingPoint {
significandBitPattern: significand)
}
/// The least representable value that compares greater than this value.
///
/// For any finite value `x`, `x.nextUp` is greater than `x`. For `nan` or
/// `infinity`, `x.nextUp` is `x` itself. The following special cases also
/// apply:
///
/// - If `x` is `-infinity`, then `x.nextUp` is `-greatestFiniteMagnitude`.
/// - If `x` is `-leastNonzeroMagnitude`, then `x.nextUp` is `-0.0`.
/// - If `x` is zero, then `x.nextUp` is `leastNonzeroMagnitude`.
/// - If `x` is `greatestFiniteMagnitude`, then `x.nextUp` is `infinity`.
public var nextUp: ${Self} {
if isNaN { return self }
if sign == .minus {
@@ -505,6 +828,40 @@ extension ${Self}: BinaryFloatingPoint {
significandBitPattern: significandBitPattern + 1)
}
/// Rounds the value to an integral value using the specified rounding rule.
///
/// The following example rounds a value using four different rounding rules:
///
/// // Equivalent to the C 'round' function:
/// var w = 6.5
/// w.round(.toNearestOrAwayFromZero)
/// // w == 7.0
///
/// // Equivalent to the C 'trunc' function:
/// var x = 6.5
/// x.round(.towardZero)
/// // x == 6.0
///
/// // Equivalent to the C 'ceil' function:
/// var y = 6.5
/// y.round(.up)
/// // y == 7.0
///
/// // Equivalent to the C 'floor' function:
/// var z = 6.5
/// z.round(.down)
/// // z == 6.0
///
/// For more information about the available rounding rules, see the
/// `FloatingPointRoundingRule` enumeration. To round a value using the
/// default "schoolbook rounding", you can use the shorter `round()` method
/// instead.
///
/// var w1 = 6.5
/// w1.round()
/// // w1 == 7.0
///
/// - Parameter rule: The rounding rule to use.
@_transparent
public mutating func round(_ rule: FloatingPointRoundingRule) {
switch rule {
@@ -528,6 +885,14 @@ extension ${Self}: BinaryFloatingPoint {
}
}
/// Replaces this value with its additive inverse.
///
/// The result is always exact. This example uses the `negate()` method to
/// negate the value of the variable `x`:
///
/// var x = 21.5
/// x.negate()
/// // x == -21.5
@_transparent
public mutating func negate() {
_value = Builtin.fneg_FPIEEE${bits}(self._value)
@@ -563,11 +928,42 @@ extension ${Self}: BinaryFloatingPoint {
%end
}
/// Replaces this value with the remainder of itself divided by the given
/// value using truncating division.
///
/// Performing truncating division with floating-point values results in a
/// truncated integer quotient and a remainder. For values `x` and `y` and
/// their truncated integer quotient `q`, the remainder `r` satisfies
/// `x == y * q + r`.
///
/// The following example calculates the truncating remainder of dividing
/// 8.625 by 0.75:
///
/// var x = 8.625
/// print(x / 0.75)
/// // Prints "11.5"
///
/// let q = (x / 0.75).rounded(.towardZero)
/// // q == 11.0
/// x.formTruncatingRemainder(dividingBy: 0.75)
/// // x == 0.375
///
/// let x1 = 0.75 * q + x
/// // x1 == 8.625
///
/// If this value and `other` are both finite numbers, the truncating
/// remainder has the same sign as this value and is strictly smaller in
/// magnitude than `other`. The `formTruncatingRemainder(dividingBy:)`
/// method is always exact.
///
/// - Parameter other: The value to use when dividing this value.
@_transparent
public mutating func formTruncatingRemainder(dividingBy other: ${Self}) {
_value = Builtin.frem_FPIEEE${bits}(self._value, other._value)
}
/// Replaces this value with its square root, rounded to a representable
/// value.
@_transparent
public mutating func formSquareRoot( ) {
%if bits == 80:
@@ -577,61 +973,222 @@ extension ${Self}: BinaryFloatingPoint {
%end
}
/// Adds the product of the two given values to this value in place, computed
/// without intermediate rounding.
///
/// - Parameters:
/// - lhs: One of the values to multiply before adding to this value.
/// - rhs: The other value to multiply.
@_transparent
public mutating func addProduct(_ lhs: ${Self}, _ rhs: ${Self}) {
_value = Builtin.int_fma_FPIEEE${bits}(lhs._value, rhs._value, _value)
}
/// Returns a Boolean value indicating whether this instance is equal to the
/// given value.
///
/// This method serves as the basis for the equal-to operator (`==`) for
/// floating-point values. When comparing two values with this method, `-0`
/// is equal to `+0`. NaN is not equal to any value, including itself. For
/// example:
///
/// let x = 15.0
/// x.isEqual(to: 15.0)
/// // true
/// x.isEqual(to: .nan)
/// // false
/// Double.nan.isEqual(to: .nan)
/// // false
///
/// The `isEqual(to:)` method implements the equality predicate defined by
/// the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if `other` has the same value as this instance;
/// otherwise, `false`.
@_transparent
public func isEqual(to other: ${Self}) -> Bool {
return Bool(Builtin.fcmp_oeq_FPIEEE${bits}(self._value, other._value))
}
/// Returns a Boolean value indicating whether this instance is less than the
/// given value.
///
/// This method serves as the basis for the less-than operator (`<`) for
/// floating-point values. Some special cases apply:
///
/// - Because NaN compares not less than nor greater than any value, this
/// method returns `false` when called on NaN or when NaN is passed as
/// `other`.
/// - `-infinity` compares less than all values except for itself and NaN.
/// - Every value except for NaN and `+infinity` compares less than
/// `+infinity`.
///
/// let x = 15.0
/// x.isLess(than: 20.0)
/// // true
/// x.isLess(than: .nan)
/// // false
/// Double.nan.isLess(than: x)
/// // false
///
/// The `isLess(than:)` method implements the less-than predicate defined by
/// the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if `other` is less than this value; otherwise, `false`.
@_transparent
public func isLess(than other: ${Self}) -> Bool {
return Bool(Builtin.fcmp_olt_FPIEEE${bits}(self._value, other._value))
}
/// Returns a Boolean value indicating whether this instance is less than or
/// equal to the given value.
///
/// This method serves as the basis for the less-than-or-equal-to operator
/// (`<=`) for floating-point values. Some special cases apply:
///
/// - Because NaN is incomparable with any value, this method returns `false`
/// when called on NaN or when NaN is passed as `other`.
/// - `-infinity` compares less than or equal to all values except NaN.
/// - Every value except NaN compares less than or equal to `+infinity`.
///
/// let x = 15.0
/// x.isLessThanOrEqualTo(20.0)
/// // true
/// x.isLessThanOrEqualTo(.nan)
/// // false
/// Double.nan.isLessThanOrEqualTo(x)
/// // false
///
/// The `isLessThanOrEqualTo(_:)` method implements the less-than-or-equal
/// predicate defined by the [IEEE 754 specification][spec].
///
/// [spec]: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
///
/// - Parameter other: The value to compare with this value.
/// - Returns: `true` if `other` is less than this value; otherwise, `false`.
@_transparent
public func isLessThanOrEqualTo(_ other: ${Self}) -> Bool {
return Bool(Builtin.fcmp_ole_FPIEEE${bits}(self._value, other._value))
}
/// A Boolean value indicating whether this instance is normal.
///
/// A *normal* value is a finite number that uses the full precision
/// available to values of a type. Zero is neither a normal nor a subnormal
/// number.
@_transparent
public var isNormal: Bool {
return exponentBitPattern > 0 && isFinite
}
/// A Boolean value indicating whether this instance is finite.
///
/// All values other than NaN and infinity are considered finite, whether
/// normal or subnormal.
@_transparent
public var isFinite: Bool {
return exponentBitPattern < ${Self}._infinityExponent
}
/// A Boolean value indicating whether the instance is equal to zero.
///
/// The `isZero` property of a value `x` is `true` when `x` represents either
/// `-0.0` or `+0.0`. `x.isZero` is equivalent to the following comparison:
/// `x == 0.0`.
///
/// let x = -0.0
/// x.isZero // true
/// x == 0.0 // true
@_transparent
public var isZero: Bool {
return exponentBitPattern == 0 && significandBitPattern == 0
}
/// A Boolean value indicating whether the instance is subnormal.
///
/// A *subnormal* value is a nonzero number that has a lesser magnitude than
/// the smallest normal number. Subnormal values do not use the full
/// precision available to values of a type.
///
/// Zero is neither a normal nor a subnormal number. Subnormal numbers are
/// often called *denormal* or *denormalized*---these are different names
/// for the same concept.
@_transparent
public var isSubnormal: Bool {
return exponentBitPattern == 0 && significandBitPattern != 0
}
/// A Boolean value indicating whether the instance is infinite.
///
/// Note that `isFinite` and `isInfinite` do not form a dichotomy, because
/// they are not total: If `x` is `NaN`, then both properties are `false`.
@_transparent
public var isInfinite: Bool {
return !isFinite && significandBitPattern == 0
}
/// A Boolean value indicating whether the instance is NaN ("not a number").
///
/// Because NaN is not equal to any value, including NaN, use this property
/// instead of the equal-to operator (`==`) or not-equal-to operator (`!=`)
/// to test whether a value is or is not NaN. For example:
///
/// let x = 0.0
/// let y = x * .infinity
/// // y is a NaN
///
/// // Comparing with the equal-to operator never returns 'true'
/// print(x == Double.nan)
/// // Prints "false"
/// print(y == Double.nan)
/// // Prints "false"
///
/// // Test with the 'isNaN' property instead
/// print(x.isNaN)
/// // Prints "false"
/// print(y.isNaN)
/// // Prints "true"
///
/// This property is `true` for both quiet and signaling NaNs.
@_transparent
public var isNaN: Bool {
return !isFinite && significandBitPattern != 0
}
/// A Boolean value indicating whether the instance is a signaling NaN.
///
/// Signaling NaNs typically raise the Invalid flag when used in general
/// computing operations.
@_transparent
public var isSignalingNaN: Bool {
return isNaN && (significandBitPattern & ${Self}._quietNaNMask) == 0
}
/// The floating-point value with the same sign and exponent as this value,
/// but with a significand of 1.0.
///
/// A *binade* is a set of binary floating-point values that all have the
/// same sign and exponent. The `binade` property is a member of the same
/// binade as this value, but with a unit significand.
///
/// In this example, `x` has a value of `21.5`, which is stored as
/// `1.34375 * 2**4`, where `**` is exponentiation. Therefore, `x.binade` is
/// equal to `1.0 * 2**4`, or `16.0`.
///
/// let x = 21.5
/// // x.significand == 1.34375
/// // x.exponent == 4
///
/// let y = x.binade
/// // y == 16.0
/// // y.significand == 1.0
/// // y.exponent == 4
public var binade: ${Self} {
if !isFinite { return .nan }
if exponentBitPattern != 0 {
@@ -645,6 +1202,20 @@ extension ${Self}: BinaryFloatingPoint {
significandBitPattern: 1 &<< RawSignificand(index))
}
/// The number of bits required to represent the value's significand.
///
/// If this value is a finite nonzero number, `significandWidth` is the
/// number of fractional bits required to represent the value of
/// `significand`; otherwise, `significandWidth` is -1. The value of
/// `significandWidth` is always -1 or between zero and
/// `significandBitCount`. For example:
///
/// - For any representable power of two, `significandWidth` is zero, because
/// `significand` is `1.0`.
/// - If `x` is 10, `x.significand` is `1.01` in binary, so
/// `x.significandWidth` is 2.
/// - If `x` is Float.pi, `x.significand` is `1.10010010000111111011011` in
/// binary, and `x.significandWidth` is 23.
public var significandWidth: Int {
let trailingZeroBits = significandBitPattern.trailingZeroBitCount
if isNormal {
@@ -794,6 +1365,9 @@ extension ${Self} {
return ${Self}(_bits: Builtin.int_fabs_FPIEEE${bits}(_value))
}
/// Creates the closest representable value to the given integer.
///
/// - Parameter value: The integer to represent as a floating-point value.
// FIXME(integers): implement properly
public init?<T : BinaryInteger>(exactly source: T) {
fatalError()
@@ -819,11 +1393,20 @@ extension ${Self} {
% ThatBuiltinName = self_ty.builtin_name
% srcBits = self_ty.bits
% sign = 's' if self_ty.is_signed else 'u'
/// Creates the closest representable value to the given integer.
///
/// - Parameter value: The integer to represent as a floating-point value.
@_transparent
public init(_ v: ${That}) {
_value = Builtin.${sign}itofp_${ThatBuiltinName}_FPIEEE${bits}(v._value)
}
/// Creates a value that exactly represents the given integer.
///
/// If the given integer is outside the representable range of this type, the
/// result is `nil`.
///
/// - Parameter value: The integer to represent as a floating-point value.
% if srcBits < SignificandBitCount:
@available(*, message: "Converting ${That} to ${Self} will always succeed.")
% end