We were missing adding witness methods of not-specialized witness tables.
This resulted in functions not being processed which led to crashes in IRGen.
rdar://158224693
If the conformance is abstract the witness table is specialized elsewhere - at the place where the concrete conformance is referenced.
Fixes a compiler crash.
add `Test`, which is the SIL-equivalent of `FunctionTest`.
It's invocation closure gets a `TestContext` instead of a `FunctionContext`.
^ The commit message #2 will be skipped:
^ - test
This allows to move many SIL APIs and utilities, which require a context, to the SIL module.
The SIL-part of SwiftPassInvocation is extracted into a base class SILContext which now lives in SIL.
Also: simplify the begin/end-pass functions of the SwiftPassInvocation.
Previously, AutoDiff closure specialization pass was triggered only on
VJPs containing single basic block. However, the pass logic allows
running on arbitrary VJPs. This PR enables the pass for all VJPs
unconditionally. So, if the pullback corresponding to multiple-BB VJP
accepts some closures directly as arguments, these closures might become
specialized by the pass. Closures passed via payload of branch tracing
enum are not specialized - this is subject for future changes.
The PR contains several commits.
1. The thing named "call site" in the code is partial_apply of pullback
corresponding to the VJP. This might appear only once, so we drop
support for multiple "call sites".
2. Enhance existing SILOptimizer tests for the pass.
3. Add validation-tests for single basic block case.
4. The change itself - delete check against single basic block.
5. Add validation-tests for multiple basic block case.
6. Add SILOptimizer tests for multiple basic block case.
Add a fake use for dead-end blocks. This allows gatherKnownLifetimeUses to be
used for local liveness by considering an "unreachable" instruction to generate
liveness. This is important when liveness is used as a boundary within which
access scopes may be extended. Otherwise, we are unable to extend access scopes
into dead-end blocks.
Fixes rdar://154406790 (Lifetime-dependent variable 'X' escapes its
scope but only if actor/class is final)
Unlike addresses of indirect arguments, a pointer argument (e.g. `UnsafePointer`) can escape a function call.
For example, it can be returned.
Fixes a miscompile
rdar://154124497
switch_enum_addr was being treated like a store instruction, which killed
the local enum's liveness. This could result local variable analysis reporting a
shorter lifetime for the local.
This showed up as a missing exclusivity diagnostic because an access scope was
not fully extended across a dependent local variable of Optional type.
This prevents the following pattern from miscompiling. It should report an exclusivity violation:
var mutableView = getOpaqueOptionalView(holder: &holder)!
mutate(&holder)
mutableView.modify()
Fixes rdar://151231236 ([~Escapable] Missing 'overlapping acceses' error when
called from client code, but exact same code produces error in same module)
Consider an empty tuple to be a value introducer rather than a forwarding
instruction.
Fixes rdar://153978086 ([nonescapable] compiler crash with dependency on an
expression)
* add `cloneFunctionBody` without an `entryBlockArguments` argument
* remove the `swift::ClosureSpecializationCloner` from the bridging code and replace it with a more general `SpecializationCloner`
When extending an access scope over a coroutines, instead of simply
considering the lifetime of the coroutine scope, recurse through all
uses of yielded values. They may be copyable, non-Escapable values
that depend on the coroutine operand.
Fixes rdar://152693622 (Extend coroutines over copied yields)
Add support for diagnosing calls to closures that return a generic
non-Escapable result.
Closures do not yet model lifetime dependencies. The diagnostics have
a special case for handling nonescaple result with no lifetime
dependence, but it previously only handled direct results. This fix handles
cases like the following:
func callIndirectClosure<T>(f: () -> NE<T>) -> NE<T> {
f()
}
Fixes rdar://134318846 ([nonescapable] diagnose function types with nonescapable results)
* Move the mutating APIs into Context.swift, because SIL can only be mutated through a MutatingContext
* move the `baseOperand` and `base` properties from the instruction classes to the `MarkDependenceInstruction` protocol
* add `valueOrAddressOperand` and `valueOrAddress` in the `MarkDependenceInstruction` protocol
It is like `zeroInitializer`, but does not actually initialize the memory.
It only indicates to mandatory passes that the memory is going to be initialized.
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.