The Getting Started guide offers a build-script command that new contributors can use to quickly build a debug compiler on their local machine. The command already has `--skip-tvos` and `--skip-watchos` flags since most compiler contributors don't need to build for those platforms. This change adds `--skip-xros` flag to the command.
It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
getVarInfo() now always returns a variable with a location and scope.
To opt out of this change, getVarInfo(false) returns an incomplete variable.
This can be used to work around bugs, but should only really be used for
printing.
The complete var info will also contain the type, except for debug_values,
as its type depends on another instruction, which may be inconsistent if
called mid-pass.
All locations in debug variables are now also stripped of flags, to avoid
issues when comparing or hashing debug variables.
This document describes how debug info works at the SIL level and how to
correctly update debug info in SIL optimization passes. This document is
inspired by its LLVM analog, "How to Update Debug Info: A Guide for LLVM Pass
Authors", which can be found at https://llvm.org/docs/HowToUpdateDebugInfo.html
The names of the private witness table accessor thunks we generate for
an opaque return type mangle the concrete conformance of the underlying
type.
If a conformance requirement of the opaque return type was witnessed by
a conditional conformance of a variadic generic type, we would crash
because of an unimplemented case in the mangler.
Fixes rdar://problem/125668798.
Invertible protocols are currently always mangled with `Ri`, followed by
a single letter for each invertible protocol (e.g., `c` and `e` for
`Copyable` and `Escapable`, respectively), followed by the generic
parameter index. However, this requires that we extend the mangling
for any future invertible protocols, which mean they won't be
backward compatible.
Replace this mangling with one that mangles the bit # for the
invertible protocol, e.g., `Ri_` (followed by the generic parameter
index) is bit 0, which is `Copyable`. `Ri0_` (then generic parameter
index) is bit 1, which is `Escapable`. This allows us to round-trip
through mangled names for any invertible protocol, without any
knowledge of what the invertible protocol is, providing forward
compatibility. The same forward compatibility is present in all
metadata and the runtime, allowing us to add more invertible
protocols in the future without updating any of them, and also
allowing backward compatibility.
Only the demangling to human-readable strings maps the bit numbers
back to their names, and there's a fallback printing with just the bit
number when appropriate.
Also generalize the mangling a bit to allow for mangling of invertible
requirements on associated types, e.g., `S.Sequence: ~Copyable`. This
is currently unsupported by the compiler or runtime, but that may
change, and it was easy enough to finish off the mangling work for it.