To be used in situations when a global actor isolation is stripped
from a function type in argument positions and could be extended in
the future to cover more if needed.
This models the conversion from an uninhabited
value to any type, and allows us to get rid of
a couple of places where we'd attempt to drop
the return statement instead.
Remove this bit from function decls and closures.
Instead, for closures, infer it from the presence
of a single return or single expression AST node
in the body, which ought to be equivalent, and
automatically takes result builders into
consideration. We can also completely drop this
query from AbstractFunctionDecl, replacing it
instead with a bit on ReturnStmt.
This commit makes it so that we treat values captured by an actor isolated
closure as being transferred to that closure. I also introduced a new diagnostic
for these warnings that puts the main warning on the capture point of the value
so the user is able to see the actual capture that causes the transfer to occur:
```swift
nonisolated func testLocal2() async {
let l = NonSendableKlass()
// This is not safe since we use l later.
self.assumeIsolated { isolatedSelf in
isolatedSelf.ns = l
}
useValue(l) // expected-note {{access here could race}}
}
```
```
test.swift:74:14: warning: main actor-isolated closure captures value of non-Sendable type 'NonSendableKlass' from nonisolated context; later accesses to value could race
useValue(x) // expected-warning {{main actor-isolated closure captures value of non-Sendable type 'NonSendableKlass' from nonisolated context; later accesses to value could race}}
^
test.swift:76:12: note: access here could race
useValue(x) // expected-note {{access here could race}}
^
```
One thing to keep in mind is that if we have a function argument being captured
in this way, we still emit the "call site passes `self`" error. I am going to
begin cleaning that up in the next commit in this PR so that we emit a better
error here. But it makes sense to split these into two separate commits since
they are doing different things.
rdar://121345525
It's not clear that its worth keeping this as a
base class for SerializedAbstractClosure and
SerializedTopLevelCodeDecl, most clients are
interested in the concrete kinds, not only whether
the context is serialized.
Introduce a new expression macro that produces an value of type
`(any AnyActor)?` that describes the current actor isolation. This
isolation will be `nil` in non-isolated code, and refer to either the
actor instance of shared global actor in other cases.
This is currently behind the experimental feature flag
OptionalIsolatedParameters.
Due to the duality between the expression and declaration forms of
freestanding macros, we could end up assigning two different discriminators
to what is effectively the same freestanding macro expansion. Across
different source files, this could lead to inconsistent discriminators in
different translation units. Unify the storage of the discriminator to
avoid this issue.
Fixes rdar://116259748
These two requests are effectively doing the same thing to two
different cases within CatchNode. Unify the requests into a single
request, ExplicitCaughtTypeRequest, which operates on a CatchNode.
This also moves the logic for closures with explicitly-specified throws
clauses into the same request, taking it out of the constraint system.
Some notes:
This is not emitted by SILGen. This is just intended to be used so I can write
SIL test cases for transfer non sendable. I did this by adding an
ActorIsolationCrossing field to all FullApplySites rather than adding it into
the type system on a callee. The reason that this makes sense from a modeling
perspective is that an actor isolation crossing is a caller concept since it is
describing a difference in between the caller's and callee's isolation. As a
bonus it makes this a less viral change.
For simplicity, I made it so that the isolation is represented as an optional
modifier on the instructions:
apply [callee_isolation=XXXX] [caller_isolation=XXXX]
where XXXX is a printed representation of the actor isolation.
When neither callee or caller isolation is specified then the
ApplyIsolationCrossing is std::nullopt. If only one is specified, we make the
other one ActorIsolation::Unspecified.
This required me to move ActorIsolationCrossing from AST/Expr.h ->
AST/ActorIsolation.h to work around compilation issues... Arguably that is where
it should exist anyways so it made sense.
rdar://118521597
For any operation that can throw an error, such as calls, property
accesses, and non-exhaustive do..catch statements, record the thrown
error type along with the conversion from that thrown error to the
error type expected in context, as appropriate. This will prevent
later stages from having to re-compute the conversion sequences.
Type checking a default argument expression will compute the required
actor isolation for evaluating that argument value synchronously. Actor
isolation checking is deferred to the caller; it is an error to use a
default argument from across isolation domains.
Currently gated behind -enable-experimental-feature IsolatedDefaultArguments.
Lower the thrown error type into the SIL function type. This requires
very little code because the thrown error type was already modeled as
a SILResultInfo, which carries type information. Note that this
lowering does not yet account for error types that need to passed
indirectly, but we will need to do so for (e.g.) using resilient error
types.
Teach a few places in SIL generation not to assume that thrown types
are always the existential error type, which primarily comes down to
ensuring that rethrow epilogues have the thrown type of the
corresponding function or closure.
Teach throw emission to implicitly box concrete thrown errors in the
error existential when needed to satisfy the throw destination. This
is a temporary solution that helps translate typed throws into untyped
throws, but it should be replaced by a better modeling within the AST
of the points at which thrown errors are converted.
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
getClosureActorIsolation.
This is preparation for changing AbstractClosureExpr to store
ActorIsolation instead of ClosureActorIsolation, and convert to
ClosureActorIsolation when needed to allow incrementally updating
callers. This change is NFC.
This PR refactors the ASTDumper to make it more structured, less mistake-prone, and more amenable to future changes. For example:
```cpp
// Before:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
printCommon(E, "unresolved_dot_expr")
<< " field '" << E->getName() << "'";
PrintWithColorRAII(OS, ExprModifierColor)
<< " function_ref=" << getFunctionRefKindStr(E->getFunctionRefKind());
if (E->getBase()) {
OS << '\n';
printRec(E->getBase());
}
PrintWithColorRAII(OS, ParenthesisColor) << ')';
}
// After:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E, StringRef label) {
printCommon(E, "unresolved_dot_expr", label);
printFieldQuoted(E->getName(), "field");
printField(E->getFunctionRefKind(), "function_ref", ExprModifierColor);
if (E->getBase()) {
printRec(E->getBase());
}
printFoot();
}
```
* Values are printed through calls to base class methods, rather than direct access to the underlying `raw_ostream`.
* These methods tend to reduce the chances of bugs like missing/extra spaces or newlines, too much/too little indentation, etc.
* More values are quoted, and unprintable/non-ASCII characters in quoted values are escaped before printing.
* Infrastructure to label child nodes now exists.
* Some weird breaks from the normal "style", like `PatternBindingDecl`'s original and processed initializers, have been brought into line.
* Some types that previously used ad-hoc dumping functions, like conformances and substitution maps, are now structured similarly to the dumper classes.
* I've fixed the odd dumping bug along the way. For example, distributed actors were only marked `actor`, not `distributed actor`.
This PR doesn't change the overall style of AST dumps; they're still pseudo-S-expressions. But the logic that implements this style is now isolated into a relatively small base class, making it feasible to introduce e.g. JSON dumping in the future.
These allow multi-statement `if`/`switch` expression
branches that can produce a value at the end by
saying `then <expr>`. This is gated behind
`-enable-experimental-feature ThenStatements`
pending evolution discussion.
Specifically, the two routines we were importing relatively were:
1. TypeChecker::conformsToProtocol. I moved this onto a helper routine on
SILType.
2. swift::findOriginalValueType(Expr *). This routine just looks through various
implicit conversions to find the original underlying type. I moved it to a
helper method on Expr.
Previously we would only base the start loc on the
`SubExpr`, but that isn't set until CSApply. Change
it to take both `SubExpr` and `Body`'s source range
into account.
Also tighten up the invariant that a TapExpr must
be created with a non-null BraceStmt.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
'MacroExpansionDecl' and 'MacroExpansionExpr' have many common methods.
Introduce a common base class 'FreestandingMacroExpansion' that holds
'MacroExpansionInfo'.
Factor out common expansion logic to 'evaluateFreestandingMacro'
function that resembles 'evaluateAttachedMacro'.