Move the global PersistentParserState from
the CompilerInstance to the source file that code
completion is operating on, only hooking up the
state when it's needed. This will help make it
easier to requestify source file parsing.
Centralize part of the routine that selects which resources to free. Then, add an additional condition for -dump-api-path.
Before, if this option were specified along with -emit-llvm or -c, the compiler would try to rebuild the torn-down ModuleDecl and crash trying to access the torn-down ASTContext.
The lifetime of the UnifiedStatsReporter was not entirely clear from context. Stick it in the CompilerInstance instead so it can live as long as the compile job.
It is critical that its lifetime be extended beyond that of the ASTContext, as the context may be torn down by the time code generation happens, but additional statistics are recorded during LLVM codegen.
e.g. Playground.
A single file script is like a single function body; the interface of
the file does not affect any other files.
So when a completion happens in a single file script, re-parse the whole
file. But we are still be able to reuse imported modules.
rdar://problem/58378157
Remove the option to switch off nested types tables. In a world where
re-entrant direct lookup will cause deserialization to fail (or worse),
disabling these tables will only lead to further instability in the
compiler.
We were previously doing this for the REPL, but
not for swift-ide-test. Move the assignment into
the frontend to make sure its always applied, and
inline `createREPLFile` while we're here.
* Remove dead ModuleSourceInfoFilename parameters
These were never actually used; we might find a way to bring them back later.
* Introduce SerializedModuleBaseName
This is intended to replace the _n_ filename parameters that tend to get passed around in the SerializedModuleLoader classes.
* Manipulate currPath in SerializedModuleLoader less often
* Don’t pass raw paths around SerializedModuleLoader
Only pass base names.
* Regularize module file opening functions
The REPL was using the CompilerInstance to stash this parameter, then it would immediately move it into IRGen. Drop the setter and pass this data directly.
Rather than parsing all delayed bodies for
`-dump-parse` once we finish parsing, tell the
parser not to delay any bodies. This then allows
us to remove `DelayedDeclLists` from
PersistentParserState.
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
- Introduce ide::CompletionInstance to manage CompilerInstance
- `CompletionInstance` vends the cached CompilerInstance when:
-- The compiler arguments (i.e. CompilerInvocation) has has not changed
-- The primary file is the same
-- The completion happens inside function bodies in both previous and
current completion
-- The interface hash of the primary file has not changed
- Otherwise, it vends a fresh CompilerInstance and cache it for the next
completion
rdar://problem/20787086
When symbols are moved to this module, this module declares them as HIDE
for the OS versions prior to when the move happened. On the other hand, the
original module should declare ADD them for these OS versions. An executable
can choose the right library to link against depending on the deployment target.
This is a walk-around that linker directives cannot specify other install
name per symbol, we should eventually remove this.
Rather than only emitting the target triple, provide additional
information about that particular target, including the module triple
(i.e., what file names will be used for Swift modules for that
triple), the runtime compatibility version if there is one, and
whether linking with rpaths is required for the standard library and
other libraries shipped with Swift. Encode this as JSON so we can
extend it in the future. For now, it looks like this:
```
{
"target": {
"triple": "arm64-apple-ios12.0",
"moduleTriple": "arm64-apple-ios",
"swiftRuntimeCompatibilityVersion": "5.0",
"librariesRequireRPath": true
}
}
```
Which you can deserialize into a TargetInfo instance as defined below:
```
struct Target: Codable {
/// The target triple.
var triple: String
/// The triple used for module file names.
var moduleTriple: String
/// If this platform provides the Swift runtime, the Swift language
version
/// with which that runtime is compatible.
var swiftRuntimeCompatibilityVersion: String?
/// Whether linking against the Swift libraries requires the use of
rpaths.
var librariesRequireRPath: Bool
}
struct TargetInfo: Codable {
var target: Target
}
```
Implements rdar://problem/47095159.
Add a -print-target-triple command line option to the Swift frontend
and driver to allow other tools (e.g., SwiftPM) to query the host
triple as it is understood by the Swift compiler. This follows the
precedent set by Clang. Implements rdar://problem/57434967.
Frontend outputs source-as-compiled, and source-ranges file with function body ranges and ranges that were unparsed in secondaries.
Driver computes diffs for each source file. If diffs are in function bodies, only recompiles that one file. Else if diffs are in what another file did not parse, then the other file need not be rebuilt.
De-duplicate TypeCheckingFlags, TypeChecker's Options, and the TypeChecker-Oriented FrontendOptions into a dedicated TypeCheckerOptions type. This moves a bunch of configuration state out of the type checker and into the ASTContext where it belongs.