Diagnostics may be emitted while parsing command line arguments. This implies
that the options which affect how diagnostics are emitted and presented need to
be parsed first.
Diagnostics are suppressed when parsing swiftinterface files, since the
warnings emitted from compiling the swiftinterface of a dependency would just
be a nuisance. It follows that warnings generated when parsing the arguments in
a swiftinterface file should also be suppressed, but that wasn't happening
because the diagnostic engine of the main compile was used for parsing. Pass
the diagnostic engine of the compiler subinstance instead, and proactively
suppress warnings before parsing begins.
Resolves rdar://142814164.
When Swift passes search paths to clang, it does so directly into the HeaderSearch. That means that those paths get ordered inconsistently compared to the equivalent clang flag, and causes inconsistencies when building clang modules with clang and with Swift. Instead of touching the HeaderSearch directly, pass Swift search paths as driver flags, just do them after the -Xcc ones.
Swift doesn't have a way to pass a search path to clang as -isystem, only as -I which usually isn't the right flag. Add an -Isystem Swift flag so that those paths can be passed to clang as -isystem.
rdar://93951328
CAS needs to determine if an output is needed very early (when computing supplementary outputs) in the pipeline so we can do caching and replays.
Resolves: rdar://141850408
There were two cache replay code exists, one for cache replay from
swift-frontend, the other for replay using C API from libSwiftScan. It
is easy to forget to update one copy when new specialized cache replay
logic is added for some output kinds. Now unify the replay logics to a
single location to avoid confusion. This is a rewrite of the existing
logic and NFCI.
Duplicate module names on search paths produces an error, but
providing duplicate module names in a Swift explicit module map
file does not, instead the first entry will be chosen. Modify
the module map parser to error on duplicated module names as well.
The symbol graph output from a module can contain an arbitrary number of
files, depending on what extensions it contains, so cache a list of
symbol graph files with their base name and contents so that they can be
replayed.
rdar://140286819
CAS support in compiler relies on supplementary paths to decide the mapping between input and output files. Therefore, we
have to compute the paths of the module ObjC trace files in this canonical place to have CAS support for
this newly added ObjC message trace files.
It is unsound to expose `package` declarations in textual interfaces without a
package identity for them to belong to so we should not offer this flag.
Resolves rdar://139361524.
This patch adds support for serialization and deserialization of
debug scopes.
Debug scopes are serialized in post order and enablement is
controlled through the experimental-serialize-debug-info flag which
is turned off by default. Functions only referred to by these debug
scopes are deserialized as zombie functions directly.
C++ swift::Parser is going to be replaced with SwiftParser+ASTGen.
Direct dependencies to it should be removed. Before that, remove
unnecessary '#include "swift/Parse/Parser.h"' to clarify what actually
depends on 'swift::Parser'.
Split 'swift::parseDeclName()' et al. into the dedicated files.
This is something that I have wanted to add for a while and have never had the
need to. I need it now to fix a bug in the bots where I am forced to use IRGen
output to test ThunkLowering which causes platform level differences to show up
in the FileCheck output. With this, I can just emit the actual lowered SIL
output and just test it at that level. There are other cases like this where we
are unable to test lowered SIL so we use IRGen creating this brittleness.
Hopefully this stops this problem from showing up in the future.
rdar://138845396
Improve the version/flags extract from interface file by moving away
from using Regex and limiting the search to the beginning of the file.
Switch away from Regex will give 5-10% improvement in time and
instruction counts, and limiting the search lines can save a lot of time
if the swiftinterface is large. For example, the extract time for Swift
stdlib is 10x faster after the patch.
Current strategey for limiting the line to search is by only parsing the
first comment block.
It might be unexpected to future users that `-swift-compiler-version`
would produce a version aligned to .swiftinterface instead of one used
to build the .swiftmodule file. To avoid this possible confusion, let's
scope down the version to `-interface-compiler-version` flag and
`SWIFT_INTERFACE_COMPILER_VERSION` option in the module.
to verify ExportedSourceFileRequest == 0.
In release mode only non-zero stats are printed by default now.
Fix diagnostic when compiler is built without statistics support.
Its functionality has been superseded by `@_spiOnly import`. There are no
longer any known clients and the flag was already unsupported in Swift 6, so
the functionality is now removed (but the flag is only deprecated for Swift 5).
Resolves rdar://136867210.
Use IncludeTreeFileList instead of full feature CASFS for swift
dependency filesystem. This allows smaller CAS based VFS that is smaller
and faster. This is enabled by the CAS enabled compilation does not
need to iterate file system.
rdar://136787368
Fully support make-style `.d` dependencies file output by making
following improvements:
* All correct dependency file render when cache hit for a different
output file location. The dependency file should list the correct
output path, not the stale output path for the initial compilation
* When enable a path prefix mapper to canonicalize the path, the
dependency file should render the input file correctly as the input
file path on disk.
rdar://132250067
When the frontend option `-abi-comments-in-module-interface` is provided
during interface printing, the printed interface will contain
additional comments that provide the mangled names for public symbols.
This is an experiment in seeing how much information we can
meaningfully extract from a printed Swift interface for the purpose of
bridging with other languages.
The "buffer ID" in a SourceFile, which is used to find the source file's
contents in the SourceManager, has always been optional. However, the
effectively every SourceFile actually does have a buffer ID, and the
vast majority of accesses to this information dereference the optional
without checking.
Update the handful of call sites that provided `nullopt` as the buffer
ID to provide a proper buffer instead. These were mostly unit tests
and testing programs, with a few places that passed a never-empty
optional through to the SourceFile constructor.
Then, remove optionality from the representation and accessors. It is
now the case that every SourceFile has a buffer ID, simplying a bunch
of code.
Introduce the concept of public facing module name designed to hide support module from external clients. This name should be set on a support module that is an implementation detail of a public module, the public module name of the support module should be the name of the public module. For example, BigKitCore’s public module name can be set to BigKit for diagnostics to refer to both modules as BigKit.
This name is used to refer to the support module in diagnostics for external clients. We determine if a client is external if they also import the module identified by the public module name. If a client doesn’t import the public module, diagnostics will always use the real name of the module.
The public module name is set with the flag -public-module-name and it's preserved in textual swiftinterfaces and binary swiftmodules.
rdar://134527933
Having package-name printed in public or private interface led to strange dependency errors in the past. For example, an SPI module is a dependency within a package, but due to the package-name being printed in public or private interface, dependency scanner tries to find it even for an external client of the package, causing a `no such module found` error. The -disable-print-package-name-for-non-package flag helps with such case, but to enforce the correct behavior, we should make it a default to not print package-name in public or private interface.
Resolves rdar://135260270
This makes sure that Swift respects `-Xcc -stdlib=libc++` flags.
Clang already has existing logic to discover the system-wide libc++ installation on Linux. We rely on that logic here.
Importing a Swift module that was built with a different C++ stdlib is not supported and emits an error.
The Cxx module can be imported when compiling with any C++ stdlib. The synthesized conformances, e.g. to CxxRandomAccessCollection also work. However, CxxStdlib currently cannot be imported when compiling with libc++, since on Linux it refers to symbols from libstdc++ which have different mangled names in libc++.
rdar://118357548 / https://github.com/swiftlang/swift/issues/69825