Starting at a crude -1000, each invocation primary input will get its own unique quasi-Pid.
Invocations with only one primary (non-batch) will get a real OS Pid.
The selection of the constant starting point matches what the driver does when outputting its parseable output.
Follow programming guidelines for these getters more closely and have them return a non-owning view of the underlying data instead of relying on callers to take const references to the copy that is returned here.
This will allow individual module scans in batch-scanning mode to share the already-scanned Swift and Clang modules, and avoid instantiating a brand new Clang `DependencyScanningService` for each batch entry.
Performance-improvement anecdote:
A simple experiment which performs a batch scan of all modules involved in planning a build of SwiftPM (using SwiftPM in explicit module build mode), which includes 126 batch entries (scan entry-points), with 21 distinct Swift modules and 27 distinct Clang modules (many Clang modules are scanned multiple times, at different target versions), this modification reduces the total time taken from ~34 seconds to ~6.
Adds a new frontend option
"-experimental-allow-module-with-compiler-errors". If any compilation
errors occur while generating the .swiftmodule, this mode will skip SIL
entirely and only serialize the (likey invalid) AST.
This existence of this option during generation is serialized into the
resulting .swiftmodule. Errors found in deserialization are only allowed
if it is set.
Primarily intended for IDE requests (eg. indexing and code completion)
to ensure robust cross-module results, despite possible errors.
Resolves rdar://69815975
This refactoring allows us to drop ModuleInterfaceLoader when explicit modules
are enabled. Before this change, the dependencies scanner needs the loader to be
present to access functionalities like collecting prebuilt module candidates.
With this option enabled, the dependency scanner gathers all import statements in source files of the main module (non-transitive) and outputs a list of imported modules.
This will be used by build systems and the swift-driver as a way to avoid redundant re-scanning in incremental contexts.
Tying InputFile to this option meant that every input that was not one of the explictly-blessed kinds was modeled as a Swift file.
With the new InputFile that infers file kinds, we no longer need CompilerInvocation::setInputKind
For now, force the clang-based actions to skip the end of the pipeline. This restores the previous behavior of the frontend, but may not be desirable in the long run. For example, one may want to dump clang stats after running an -emit-pch job, but that is impossible without forcing the end of the pipeline to be more tolerant of ObjCHeader/modulemap-only inputs.
rdar://68587228
These inputs were previously modeled as Swift files, which would lead to bizarre situations where parts of the pipeline expecting Swift inputs actually wound up parsing Objective-C.
We need ClangImporterOptions to be persistent for several scenarios: (1)
when creating a sub-ASTContext to build Swift modules from interfaces; and
(2) when creating a new Clang instance to invoke Clang dependencies scanner.
This change is NFC.
Try to impose a simple structure that splits performing actions from the
pre and post-pipeline conditions. Wherever actions would take more than
a simple return, split them into functions. Refine functions that
perform effects to return status codes when they fail. Finally,
delineate functions that need semantic analysis from those that do not.
Overall this should be NFC.
For the issue mentioned in rdar://67079780, swift-driver needs to run clang dependencies
scanner multiple times with different target triples for a Swift target. This patch adds
a new scanning action to generate the JSON file for a given clang module to accommodate
this requirement.
Resolves: rdar://problem/67269210