Previously we were skipping the macro’s definition (i.e. the part after `=` in a macro declaration if it wasn’t type checked. Since syntactic rename doesn’t type-check anything, it was thus skippin the macro definition. Add a flag to `ASTWalker` that allows `NameMatcher` to opt-out of this behavior.
for checking duplicated results from multiple type checker solutions.
e.g.
protocol Proto {}
struct Generic<T> {
func retProto() -> some Proto
}
func foo() -> Generic<T1>
func foo() -> Generic<T2>
foo().<COMPLETION>
The return type of `Geric<T1>.retProto()` and `Geric<T2>.retProto()` is
different, but they both spelled 'some Proto'. So IDE consumers don't
care the difference.
rdar://107669173
Only return macros that are valid in their current position, ie. an
attached macro is not valid on a nominal.
Also return freestanding expression macros in code block item position
and handle the new freestanding code item macros.
Resolves rdar://105563583.
This hooks up the cursor info infrastructure to be able to pass through multiple, ambiguous results. There are still minor issues that cause solver-based cursor info to not actually report the ambiguous results but those will be fixed in a follow-up PR.
Cursor info only cares about the `doneParsing` callback and not about all the `complete` functions that are now defined in `CodeCompletionCallbacks`. To make the design clearer, split `IDEInspectionCallbacks`.
rdar://105120332
Setting the interface type of a variable, just to reset it to a null type is actually really gross. But quite a few methods further down in the generation of code completion results (such as USR generation) need to get a variable’s type and passing them along in a separate map would be really invasive. So this seems like the least bad solution to me.
We don't need special completion logic for things like `#file` and
`#line` now that they are declared in the standard library. Drop it
and update tests.
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
Add two new fields to refactoring edits:
- A file path if the edit corresponds to a buffer other than the
original file
- A buffer name when the edit is actually source of generated buffer
Macro expansions allow the former as a macro could expand to member
attributes, which may eg. add accessors to each member. The attribute
itself is inside the expansion, but the edit is to the member in the
original source.
The latter will later allow clients to send requests with these names to
allow semantic functionality inside synthesized buffers.
Various requests expect to be walking over the current source file.
While we could add checks to all these to skip decls outside of the
current buffer, it's a little nicer to handle this during the walk
instead.
Allow ignoring nodes that are from macro expansions and add that flag to
the various walks that expect it.
Also add a new `getOriginalAttrs` that filters out attributes in
generated source.
This allows us to model the `ResolvedCursorInfo` types as a proper type hierarchy instead of having to store all values in the base `ResolvedCursorInfo` type.
rdar://102853071
Extend the macro-expansion refactoring to work with member and
member-attribute attached macros. These expansions can return several
different changes, e.g., adding new members, sprinkling member
attributes around, and so on.
Update rename to pull the outermost-declaration so that references are correctly found.
Rather than keeping suppressed locations in the current parent, keep
them for the whole index. Local rename starts the lookup from the
innermost context it can, which could be a closure. In that case there
is no parent decl on the stack and thus no where to store the locations
to suppress. We could have a specific store for this case, but there
shouldn't be that many of these and they're relatively cheap to store
anyway.
Resolves rdar://104568539.
This brings up the ability to compute cursor info results using the completion-like type checking paradigm, which an reuse ASTContexts and doesn’t need to type check the entire file.
For now, the new implementation only supports cursor info on `ValueDecl`s (not on references) because they were easiest to implement. More cursor info kinds are coming soon.
At the moment, we only run the new implementation in a verification mode: It is only invoked in assert toolchains and when run, we check that the results are equivalent to the old implementation. Once more cursor info kinds are implemented and if the SourceKit stress tester doesn’t find any verification issues, we can enable the new implementation, falling back to the old implementation if the new one didn’t produce any results.
This way, each kind of `ResolvedCursorInfo` can define its own set of properties and it’s obvious which properties are used for which kind. Also switch to getters and setters because that makes it easier to search for usages of properties by looking at the call hierarchy of the getter / setter.
Although the declaration of macros doesn't appear in Swift source code
that uses macros, they still operate as declarations within the
language. Rework `Macro` as `MacroDecl`, a generic value declaration,
which appropriate models its place in the language.
The vast majority of this change is in extending all of the various
switches on declaration kinds to account for macros.
IDE/Refactoring had dependencies to libswiftIndex, but libswiftIndex
also depends on libswiftIDE (SourceEntityWalker, etc.)
To break libswiftIndex <-> libswiftIDE dependency cycle, move
"refactoring" related files to a new library 'libswiftRefactoring'
rdar://101692282