This function is part of the Swift standard library, not the *C*
standard library. Correct the library name for the module to ensure that
it is properly exported.
[SUA][Runtime] Define `swift_coroFrameAlloc` function that allocates typed memory
Define `swift_coroFrameAlloc` that allocates typed memory if SWIFT_STDLIB_HAS_MALLOC_TYPE is defined.
This function will be used by IRGen to emit typed memory allocations for property accessors.
rdar://141235539
Remove the multiple definitions of `std::bit_cast` into a header. While
this is still not great, it does reduce the duplication. This also
silently works towards reducing a bit of the UB introduced here by
adding an inline namespace for `std` which you are not technically
allowed to use. However, by doing this, we have a clear migration path
away from this once we adopt C++20.
Adjust the declarations to match the definitions and then remove the
conditional declaration which was marked with a FIXME. This allows
building the runtime without warnings in the new Runtimes build.
This adjusts the runtime function declaration handling to track the
owning module for the well known functions. This allows us to ensure
that we are able to properly identify if the symbol should be imported
or not when building the shared libraries. This will require a
subsequent tweak to allow for checking for static library linkage to
ensure that we do not mark the symbol as DLLImport when doing static
linking.
We have some problems on Linux where Glibc pulls in `<elf.h>` and then
we end up with conflicting definitions. Fix by using C++ interop and
putting our definitions into a namespace.
rdar://137201928
`std::result_of_t` has been deprecated and replaced with
`std::invoke_result_t`. Update to the newer spelling to avoid the C++17
deprecation warnings when building with a new STL.
`Builtin.FixedArray<let N: Int, T: ~Copyable & ~Escapable>` has the layout of `N` elements of type `T` laid out
sequentially in memory (with the tail padding of every element occupied by the array). This provides a primitive
on which the standard library `Vector` type can be built.
This entrypoint is similar to swift_task_isCurrentExecutor except that it
provides an ABI level option flag that enables one to configure its behavior in
a backwards deployable manner via the option flag.
I used this to expose at the ABI level the ability to check the current executor
without crashing on failure, while preserving the current behavior of
swift_task_isCurrentExecutor (which crashes on failure).
I am going to use this to implement swift_task_runOnMainActor.
It's possible that the job we enqueue holds the last strong reference to the actor. If that job runs on another thread after we enqueue it, then it's possible for `this` to be destroyed while we're still in this function. We need to use `this` after the enqueue when the priorities don't match. When it looks like that will happen, retain `this` before the enqueue to ensure it stays alive until we're done with it.
Introduce a defensive retain helper class that makes it easy to do a single retain under certain conditions even in a loop, and does RAII to balance it with a release when the scope exits.
rdar://135400933
In embedded mode, we mustn't have references to the C++ library, because
some embedded platforms don't include the C++ library.
Additionally, it's good to avoid use of global operator new and operator
delete, because they can be globally overridden and this has bitten us
in the past.
rdar://137286187
`ExecutorHooks.h` is now nothing to do with hooks, so rename it. Also
there are some additional functions it should declare, and a couple of
places where we've slightly messed up the boundary, for instance
`swift_task_asyncMainDrainQueue` was defined in `Task.cpp` rather than
in the executor implementations, which is wrong, so fix that too.
`CooperativeGlobalExecutor.cpp` now builds against the interface from
`ExecutorImpl.h`, rather than including the all the concurrency headers.
rdar://135380149
C++ executor implementations were `#include`ed into `GlobalExecutor.cpp`,
which makes it difficult to replace the global executor when using the
Embedded Concurrency library. Refactor things so that they build into
separate objects, which means replacing them is just a matter of writing
the relevant functions yourself.
rdar://135380149
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
The descriptor map is keyed by a simplified mangling that canonicalizes the differences that we accept in _contextDescriptorMatchesMangling, such as the ability to specify any kind of type with an OtherNominalType node.
This simplified mangling is not necessarily unique, but we use _contextDescriptorMatchesMangling for the final equality checking when looking up entries in the map, so occasional collisions are acceptable and get resolved when probing the table.
The table is meant to be comprehensive, so it includes all descriptors that can be looked up by name, and a negative result means the descriptor does not exist in the shared cache. We add a flag to the options that can mark it as non-definitive in case we ever need to degrade this, and fall back to a full search after a negative result.
The map encompasses the entire shared cache but we need to reject lookups for types in images that aren't loaded. The map includes an image index which allows us to cheaply query whether a given descriptor is in a loaded image or not, so we can ignore ones which are not.
TypeMetadataPrivateState now has a separate sections array for sections within the shared cache. _searchTypeMetadataRecords consults the map first. If no result is found in the map and the map is marked as comprehensive, then only the sections outside the shared cache need to be scanned.
Replace the SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED environment variable with one specifically for metadata and one for descriptor lookup so they can be controlled independently. Also add SWIFT_DEBUG_VALIDATE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP which consults the map and does the full scan, and ensures they produce the same result, for debugging purposes.
Enhance the environment variable code to track whether a variable was set at all. This allows SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED to override the default in either direction.
Remove the disablePrespecializedMetadata global and instead modify the mapConfiguration to disable prespecialized metadata when an image is loaded that overrides one in the shared cache.
rdar://113059233
It cannot be used for executing general-purpose work, because such function would need to have a different signature to pass isolated actor instance.
And being explicit about using this method only for deinit allows to use object pointer for comparison with executor identity.
* [Concurrency] Fix task excutor handling of default actor isolation
The task executor API did not properly account for taking the default
actor locking into account when running code on it, we just took the job
and ran it without checking with the serial executor at all, which
resulted in potential concurrent executions inside the actor --
violating actor isolation.
Here we change the TaskExecutor enqueue API to accept the "target"
serial executor, which in practice will be either generic or a specific
default actor, and coordinate with it when we perform a
runSynchronously.
The SE proposal needs to be amended to showcase this new API, however
without this change we are introducing races so we must do this before
the API is stable.
* Remove _swift_task_enqueueOnTaskExecutor as we don't use it anymore
* no need for the new protocol requirement
* remove the enqueue(_ job: UnownedJob, isolatedTo unownedSerialExecutor: UnownedSerialExecutor)
Thankfully we dont need it after all
* Don't add swift_defaultActor_enqueue_withTaskExecutor and centralize the task executor getting to enqueue()
* move around extern definitions
This reverts c07aa9c425 which was done to
avoid a crash in optimnized caused by this PR:
https://github.com/apple/swift/pull/41088
Since this was almost 2 years ago, we probably don't have this issue
anymore as far as I can see other resolved issues, so try to remove the
workaround.
Resolves rdar://88711954