I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the value.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This instruction is similar to AssignByWrapperInst, but instead of having
a destination operand, the initialization is fully factored into the init
function operand. Like AssignByWrapper, AssignOrInit has partial application
operands of both the initializer and the setter, and DI will lower the
instruction to a call based on whether the assignment is initialization or
a setter call.
Just the $*T -> $*@moveOnly T variant for addresses. Unlike the object version
this acts like a cast rather than something that provides semantics from the
frontend to the optimizer.
The reason why I am using a different instruction for addresses and objects here
is that the object checker doesnt have to deal with things like initialization.
The new alloc_pack_metadata and dealloc_pack_metadata are inserted as
part of IRGen lowering. The former indicates that the next instruction
might result in on-stack pack metadata being emitted. The latter
indicates that this is the position at which metadata emitted on behalf
of its operand should be cleaned up.
* add new create-functions for instructions
* allow the Builder to build static initializer instructions for global variables
* some refactoring to simplify the implementation
This patch replaces the stateful generation of SILScope information in
SILGenFunction with data derived from the ASTScope hierarchy, which should be
100% in sync with the scopes needed for local variables. The goal is to
eliminate the surprising effects that the stack of cleanup operations can have
on the current state of SILBuilder leading to a fully deterministic (in the
sense of: predictible by a human) association of SILDebugScopes with
SILInstructions. The patch also eliminates the need to many workarounds. There
are still some accomodations for several Sema transformation passes such as
ResultBuilders, which don't correctly update the source locations when moving
around nodes. If these were implemented as macros, this problem would disappear.
This necessary rewrite of the macro scope handling included in this patch also
adds proper support nested macro expansions.
This fixes
rdar://88274783
and either fixes or at least partially addresses the following:
rdar://89252827
rdar://105186946
rdar://105757810
rdar://105997826
rdar://105102288
The verify-di-hole SILVerifier pass is very useful in catching incorrectly set
SILDebugScopes, but it can be very tedious to track down the root cause of a
verification failure. This patch replicates much of its functionality inside an
assertion in SILBuilder, which will result in a backtrace pointing directly to
where the offending scope is being set.
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
Consider the following example:
```
class Klass {}
@_moveOnly struct Butt {
var k = Klass()
}
func mixedUse(_: inout Butt, _: __owned Butt) {}
func foo() {
var y = Butt()
mixedUse(&y, y)
}
```
In this case, we want to have an exclusivity violation. Before this patch, we
did a by-value load [copy] of y and then performed the inout access. Since the
access scopes did not overlap, we would not get an exclusivity violation.
Additionally, since the checker assumes that exclusivity violations will be
caught in such a situation, we convert the load [copy] to a load [take] causing
a later memory lifetime violation as seen in the following SIL:
```
sil hidden [ossa] @$s4test3fooyyF : $@convention(thin) () -> () {
bb0:
%0 = alloc_stack [lexical] $Butt, var, name "y" // users: %4, %5, %8, %12, %13
%1 = metatype $@thin Butt.Type // user: %3
// function_ref Butt.init()
%2 = function_ref @$s4test4ButtVACycfC : $@convention(method) (@thin Butt.Type) -> @owned Butt // user: %3
%3 = apply %2(%1) : $@convention(method) (@thin Butt.Type) -> @owned Butt // user: %4
store %3 to [init] %0 : $*Butt // id: %4
%5 = begin_access [modify] [static] %0 : $*Butt // users: %7, %6
%6 = load [take] %5 : $*Butt // user: %10 // <————————— This was a load [copy].
end_access %5 : $*Butt // id: %7
%8 = begin_access [modify] [static] %0 : $*Butt // users: %11, %10
// function_ref mixedUse2(_:_:)
%9 = function_ref @$s4test9mixedUse2yyAA4ButtVz_ADntF : $@convention(thin) (@inout Butt, @owned Butt) -> () // user: %10
%10 = apply %9(%8, %6) : $@convention(thin) (@inout Butt, @owned Butt) -> ()
end_access %8 : $*Butt // id: %11
destroy_addr %0 : $*Butt // id: %12
dealloc_stack %0 : $*Butt // id: %13
%14 = tuple () // user: %15
return %14 : $() // id: %15
} // end sil function '$s4test3fooyyF'
```
Now, instead we create a [consume] access and get the nice exclusivity error we
are looking for.
NOTE: As part of this I needed to tweak the verifier so that [deinit] accesses
are now allowed to have any form of access enforcement before we are in
LoweredSIL. I left in the original verifier error in LoweredSIL and additionally
left in the original error in IRGen. The reason why I am doing this is that I
need the deinit access to represent semantically what consuming from a
ref_element_addr, global, or escaping mutable var look like at the SIL level so
that the move checker can error upon it. Since we will error upon such
consumptions in Canonical SIL, such code patterns will never actually hit
Lowered/IRGen SIL, so it is safe to do so (and the verifier/errors will help us
if we make any mistakes). In the case of a non-escaping var though, we will be
able to use deinit statically and the move checker will make sure that it is not
reused before it is reinitialized.
rdar://101767439
This instruction can be inserted by Onone optimizations as a replacement for deleted instructions to
ensure that it's possible to single step on its location.
This allows dynamically indexing into tuples. IRGen not yet
implemented.
I think I'm going to need a type_refine_addr instruction in
order to handle substitutions into the operand type that
eliminate the outer layer of tuple-ness. Gonna handle that
in a follow-up commit.
Having added these, I'm not entirely sure we couldn't just use
alloc_stack and dealloc_stack. Well, if we find ourselves adding
a lot of redundancy with those instructions (e.g. around DI), we
can always go back and rip these out.