The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
Store a list of argument effects in a function, which specify if and how arguments escape.
Such effects can be specified in the Swift source code (for details see docs/ReferenceGuides/UnderscoredAttributes.md) or derived in an optimization pass.
For details see the documentation in SwiftCompilerSources/Sources/SIL/Effects.swift.
Returns true if this SILFunction must be a defer.
NOTE: This may return false for defer statements that have been
deserialized without a DeclContext. This means that this is guaranteed to
be correct for SILFunctions in Raw SIL that were not deserialized as
canonical. Thus one can use it for diagnostics.
- If any of the `-g<kind>` flag is given -- except `-gnone`, debug
info will be printed into every generated SIL files.
- The `-gsil` is deprecated in favor of `-sil-based-debuginfo`. The
SILDebugInfoGenerator Pass now generates intermediate SIL file with
name "<output file>.sil_dbg_<n>.sil". Other functionalities of that
Pass remain the same.
This is the initial version of a buildable SIL definition in libswift.
It defines an initial set of SIL classes, like Function, BasicBlock, Instruction, Argument, and a few instruction classes.
The interface between C++ and SIL is a bridging layer, implemented in C.
It contains all the required bridging data structures used to access various SIL data structures.
This showed up when trying to convert swift-package-manager to build
using static linking on Windows. We would not correctly identify the
module as being static due to there being no DeclContext for emission.
When an instruction is "deleted" from the SIL, it is put into the SILModule::scheduledForDeletion list.
The instructions in this list are eventually deleted for real in SILModule::flushDeletedInsts(), which is called by the pass manager after each pass run.
In other words: instruction deletion is deferred to the end of a pass.
This avoids dangling instruction pointers within the run of a pass and in analysis caches.
Note that the analysis invalidation mechanism ensures that analysis caches are invalidated before flushDeletedInsts().
In theory we could map opened archetypes per module because opened archetypes _should_ be unique across the module.
But currently in some rare cases SILGen re-uses the same opened archetype in multiple functions.
The fix is to add the SILFunction to the map's key.
That also requires that we update the map whenever instructions are moved from one function to another.
This fixes a compiler crash.
rdar://76916931
And rename MemoryDataflow -> BitDataflow.
MemoryLifetime contained MemoryLocations, MemoryDataflow and the MemoryLifetimeVerifier.
Three independent things, for which it makes sense to have them in three separated files.
NFC.
* add a BasicBlockSetVector class
* add a second argument to BasicBlockFlag::set, for the set value.
* rename BasicBlockSet::remove -> BasicBlockSet::erase.
* add a MaxBitfieldID statistics value in SILFunction.cpp
Previously, the name of the entry point function was always main. Here,
a new frontend flag is added to enable an arbitrary name to be
specified.
rdar://58275758
* Instead of passing the vector type as template argument, use a SmallVector and just pass the inline size
* Increase the inline size to 32. Found by experiment, this fits 90% of all functions.
* add an API for getting data for newly created blocks.
It can be used by transforms to store temporary data per basic block.
It is very efficient: only a single memory allocation is needed and no maps are used to lookup data.
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
The leak happened in this scenario:
1. A function becomes dead and gets deleted (which means: it gets added to the zombie-list)
2. A function with the same name is created again. This can happen with specializations.
In such a case we just removed the zombie function from the zombie-list without deleting it.
But we cannot delete zombie functions, because they might still be referenced by metadata, like debug-info.
Therefore the right fix is to resurrect the zombie function if a new function is created with the same name.
rdar://problem/66931238
This will make it easier for me with a few further refactors to make the
ownership verifier testing mode emit per function error numbers instead of the
global error number that it is emitting now.
The reason why this is necessary is that today, the verification by
-sil-verify-all causes the errors to be emitted. That verification is done on a
per value level, rather than a per function level, so it is hard to get per
function error numbers without doing unprincipled things like propagating around
state saying what the current function being verified is.
This pass instead will let me make the error counter be per ErrorBuilder which
are created per function.
One thing to be aware of is that this /will/ cause SILValue::verifyOwnership to
not emit any output when the testing flag is enabled. This is to ensure I only
do not get duplicate textual error messages from the SILVerifier.
This became necessary after recent function type changes that keep
substituted generic function types abstract even after substitution to
correctly handle automatic opaque result type substitution.
Instead of performing the opaque result type substitution as part of
substituting the generic args the underlying type will now be reified as
part of looking at the parameter/return types which happens as part of
the function convention apis.
rdar://62560867
The design implemented in this patch is that we lower the types of accessors with pattern substitutions when lowering them against a different accessor, which happens with class overrides and protocol witnesses, and that we introduce pattern substitutions when substituting into a non-patterned coroutine type. This seems to achieve consistent abstraction without introduce a ton of new complexity.
An earlier version of this patch tried to define witness thunks (conservatively, just for accessors) by simply applying the requirement substitutions directly to the requirement. Conceptually that should work, but I ran into a lot of trouble with things that assumed that pattern substitutions didn't conceal significant substitution work. for example, resolving a dependent member in a component type could find a new use of an opaque archetype when the code assumed that such types had already been substituted away. So while I think that is definiteely a promising direction, I had to back that out in order to make the number of changes manageable for a single PR.
As part of this, I had to fix a number of little bugs here and there, some of which I just introduced. One of these bugfixes is a place where the substitution code was trying to improperly abstract function types when substituting them in for a type parameter, and it's been in the code for a really long time, and I'm really not sure how it's never blown up before.
I'm increasingly of the opinion that invocation substitutions are not actually necessary, but that --- after we've solved the substitution issues above --- we may want the ability to build multiple levels of pattern substitution so that we can guarantee that e.g. witness thunks always have the exact component structure of the requirement before a certain level of substitution, thus allowing the witness substitutions to be easily extracted.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
The weak imported flag is now only set if the attribute is unconditionally
weak linked, which is the case when it or one of its parent contexts has a
@_weakLinked attribute.
To correctly handle weak linking based availability with serialized SIL
functions, we need to serialize the actual version tuple when the SIL function
was introduced. This is because the deployment target of the client app can
be older than the deployment target that the original module was built with.
Fixes <rdar://problem/52783668>.
* Fix multi-threaded IRGen: store the DeclContext in a SILFunction explicitly instead of deriving it from the debug location. It's used in IRGen to decide into which module a function is emitted. With -gsil the debug location is changed and that should not change the module decision.
* Erase debug_value/debug_value_addr instructions when using -gsil. Those instructions are not needed anymore. They can also trigger a verifier error.
Rather than storing the set of input requirements in a
(SIL)SpecializeAttr, store the specialized generic signature. This
prevents clients from having to rebuild the same specialized generic
signature on every use.