...instead of crashing. Also drop the class if its generic
requirements depend on a type that can't be loaded (instead of
crashing).
rdar://problem/50125674
Similar to 517f5d6b6a, the "shadowed" terminology didn't end up
describing the most common use of the feature; there is pretty much no
intended case where a Swift module shadows a Clang module without also
re-exporting it. Switch to "underlying", which was already in use in a
few places, and which better parallels "overlay".
No intended functionality change.
To distinguish between classes which have the same name (but are in different contexts).
Fixes a miscompile if classes with the same name are used from a different module.
SR-10634
rdar://problem/50538534
Previously 'isSystemModule()' returns true only if the module is:
- Standard library
- Clang module and that is `IsSystem`
- Swift overlay for clang `IsSystem` module
Now:
- Clang module and that is `IsSystem`; or
- Swift overlay for clang `IsSystem` module
- Swift module found in either of these directories:
- Runtime library directoris (including stdlib)
- Frameworks in `-Fsystem` directories
- Frameworks in `$SDKROOT/System/Library/Frameworks/` (Darwin)
- Frameworks in `$SDKROOT/Library/Frameworks/` (Darwin)
rdar://problem/50516314
Serialize the relationship between a property that has an attached delegate
and its backing variable, so deserialization can reestablish that link.
Fixes rdar://problem/50447022.
Dependency tracking for cached compiled modules (compiled from
swiftinterfaces) can lead to a high percentage of the module being
SDK-relative paths when -track-system-dependencies is on. Cut down on
this by storing directory names in a separate record that gets
referenced from each file dependency. (Since a lot of per-file
dependencies are header files in a common directory, this is a win.)
We can do something more clever in the future, but this is a
reasonable start for, say, the overlays.
rdar://problem/50449802
Fix a trio of issues involving mangling for opaque result types:
* Symbolic references to opaque type descriptors are not substitutions
* Mangle protocol extension contexts correctly
* Mangle generic arguments for opaque result types of generic functions
The (de-)serialization of generic parameter lists for opaque type
declarations is important for the last bullet, to ensure that the
mangling of generic arguments of opaque result types works across
module boundaries.
Fixes the rest of rdar://problem/50038754.
form SerializedModuleLoader into its own ModuleLoader class. (NFC-ish)
This gives better control over the order in which the various module
load mechanisms are applied.
When printing a swiftinterface, represent opaque result types using an attribute that refers to
the mangled name of the defining decl for the opaque type. To turn this back into a reference
to the right decl's implicit OpaqueTypeDecl, use type reconstruction. Since type reconstruction
doesn't normally concern itself with non-type decls, set up a lookup table in SourceFiles and
ModuleFiles to let us handle the mapping from mangled name to opaque type decl in type
reconstruction.
(Since we're invoking type reconstruction during type checking, when the module hasn't yet been
fully validated, we need to plumb a LazyResolver into the ASTBuilder in an unsightly way. Maybe
there's a better way to do this... Longer term, at least, this surface design gives space for
doing things more the right way--a more request-ified decl validator ought to be able to naturally
lazily service this request without the LazyResolver reference, and if type reconstruction in
the future learns how to reconstruct non-type decls, then the lookup tables can go away.)
Escapingness is a property of the type of a value, not a property of a function
parameter. Having it as a separate parameter flag just meant one more piece of
state that could get out of sync and cause weird problems.
Instead, always look at the noescape bit in a function type as the canonical
source of truth.
This does mean that '@escaping' is now printed in a few diagnostics where it was
not printed before; we can investigate these as separate issues, but it is
correct to print it there because the function types in question are, in fact,
escaping.
Fixes <https://bugs.swift.org/browse/SR-10256>, <rdar://problem/49522774>.
When a Swift module built with debug info imports a library without
debug info from a textual interface, the textual interface is
necessary to reconstruct types defined in the library's interface. By
recording the Swift interface files in DWARF dsymutil can collect them
and LLDB can find them.
rdar://problem/49751363
Previously, the ParseableInterfaceModuleLoader relied on the assumption
that, if it returned `errc::not_supported`, it would fall through the
search paths and then move on to the SerializedModuleLoader. This did
not anticipate the possibility of a valid .swiftinterface coming later
in the search paths, which can cause issues for the standard library
which is in the resource-dir and should always be loaded from there.
Instead, make the module loading explicitly short-circuit when seeing
`errc::not_supported`, and document it.
Also add some more logging throughout `discoverLoadableModule` so we can
more easily catch issues like this in the future.
Fixes rdar://49479386
This patch modifies ParseableInterfaceBuilder::CollectDepsForSerialization to
avoid serializing dependencies from the runtime resource path into the
swiftmodules generated from .swiftinterface files. This means the module cache
should now be relocatable across machines.
It also modifies ParseableInterfaceModuleLoader to never add any dependencies
from the module cache and prebuilt cache to the dependency tracker (in addition
to the existing behaviour of not serializing them in the generated
swiftmodules). As a result, CollectDepsForSerialization no longer checks if the
dependencies it is given come from the cache as they are provided by the
dependency tracker. It now asserts that's the case instead.
* Moves the IsStatic flag from VarDecl to AbstractStorageDecl.
* Adds a StaticSubscriptKind to SubscriptDecl.
* Updates serialization for these changes.
* Updates SubscriptDecl constructor call sites for these changes.
When we build incrementally, we produce "partial swiftmodules" for
each input source file, then merge them together into the final
compiled module that, among other things, gets used for debugging.
Without this, we'd drop @_implementationOnly imports and any types
from the modules that were imported during the module-merging step
and then be unable to debug those types
This is an attribute that gets put on an import in library FooKit to
keep it from being a requirement to import FooKit. It's not checked at
all, meaning that in this form it is up to the author of FooKit to
make sure nothing in its API or ABI depends on the implementation-only
dependency. There's also no debugging support here (debugging FooKit
/should/ import the implementation-only dependency if it's present).
The goal is to get to a point where it /can/ be checked, i.e. FooKit
developers are prevented from writing code that would rely on FooKit's
implementation-only dependency being present when compiling clients of
FooKit. But right now it's not.
rdar://problem/48985979
In addition to being wasteful, this is a correctness issue -- the
compiler should only ever have one view of this file, and it should not
read a potentially different file after validating dependencies.
rdar://48654608
Introduce stored property default argument kind
Fix indent
Assign nil to optionals with no initializers
Don't emit generator for stored property default arg
Fix problem with rebase
Indentation
Serialize stored property default arg text
Fix some tests
Add missing constructor in test
Print stored property's initializer expression
cleanups
preserve switch
complete_constructor
formatting
fix conflict
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.
Add a bit to the module to determine whether the dependency’s stored bit pattern is a hash or an mtime.
Prebuilt modules store a hash of their dependencies because we can’t be sure their dependencies will have the same modtime as when they were built.
This is like '@inlinable', except that the symbol does not have a public
entry point in the generated binary at all; it is deserialized and a copy
is always emitted into the client binary, with shared linkage.
Just like '@inlinable', if you apply this to an internal declaration it
becomes '@usableFromInline' automatically.
This uses the same mechanism as default arguments ever since Swift 4, so
it should work reasonably well, but there are rough edges with diagnostics
and such. Don't use this if you are not the standard library.
Fixes <rdar://problem/33767512>, <https://bugs.swift.org/browse/SR-5646>.
Previously, we included the PCH hash components in the cache key. While they didn’t do any harm, they didn’t contribute any unique information about the module in question.
Additionally, passing the effective language version in means that each dependency that uses a different -swift-version would re-compile all of its dependencies. This is unfortunate, as that means the standard library is recompiled potentially several times.
Hashing the contents of the interface files is overkill. In practice, size and last modification time are enough to determine if a file has changed on disk, and therefore should be rebuilt.
It does not take ownership of its non-trivial arguments, is a trivial
function type and therefore must not be destroyed. The compiler must
make sure to extend the lifetime of non-trivial arguments beyond the
last use of the closure.
%objc = copy_value %0 : $AnObject
%closure = partial_apply [stack] [callee_guaranteed] %16(%obj) : $@convention(thin) (@guaranteed AnObject) -> ()
%closure2 = mark_dependence %closure : $@noescape @callee_guaranteed () -> () on %obj : $AnObject
%user = function_ref @useClosure : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %user(%closure2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
dealloc_stack %closure : $() ->()
destroy_value %obj : $AnObject // noescape closure does not take ownership
SR-904
rdar://35590578