Opaque result type archetypes can involve type variables, which
then get introduced into GenericSignatureBuilders and the
generated GenericSignatures. Allocate them in the proper arena
So we don’t end up with use-after-free errors.
Fixes rdar://problem/50309503.
This allows the conversion of the Windows `BOOL` type to be converted to
`Bool` implicitly. The implicit bridging allows for a more ergonomic
use of the native Windows APIs in Swift.
Due to the ambiguity between the Objective C `BOOL` and the Windows
`BOOL`, we must manually map the `BOOL` type to the appropriate type.
This required lifting the mapping entry for `ObjCBool` from the mapped
types XMACRO definition into the inline definition in the importer.
Take the opportunity to simplify the mapping code.
Adjust the standard library usage of the `BOOL` type which is now
eclipsed by the new `WindowsBool` type, preferring to use `Bool`
whenever possible.
Thanks to Jordan Rose for the suggestion to do this and a couple of
hints along the way.
The initialization of an instance property that has an attached
property delegate involves the initial value written on the property
declaration, the implicit memberwise initializer, and the default
arguments to the implicit memberwise initializer. Implement SILGen
support for each of these cases.
There is a small semantic change to the creation of the implicit
memberwise initializer due to SE-0242 (default arguments for the
memberwise initializer). Specifically, the memberwise initializer will
use the original property type for the parameter to memberwise
initializer when either of the following is true:
- The corresponding property has an initial value specified with the
`=` syntax, e.g., `@Lazy var i = 17`, or
- The corresponding property has no initial value, but the property
delegate type has an `init(initialValue:)`.
The specific case that changed is when a property has an initial value
specified as a direct initialization of the delegate *and* the
property delegate type has an `init(initialValue:)`, e.g.,
```swift
struct X {
@Lazy(closure: { ... })
var i: Int
}
```
Previously, this would have synthesized an initializer:
```swift
init(i: Int = ???) { ... }
```
However, there is no way for the initialization specified within the
declaration of i to be expressed via the default argument. Now, it
synthesizes an initializer:
```swift
init(i: Lazy<Int> = Lazy(closure: { ... }))
```
When a property has an attached property delegate, a backing storage
property of the corresponding delegate type will be
synthesized. Perform this synthesis, and also synthesize the
getter/setter for the original property to reference the backing
storage property.
Tear out the hacks to pre-substitute opaque types before they enter the SIL type system.
Implement UnderlyingToOpaqueExpr as bitcasting the result of the underlying expression from the
underlying type to the opaque type.
The non-generic nominal type nodes do not actually need to use LLVM's
FoldingSetNode, and on my workstation the release build of the standard
library completes about 1/3 of a second faster after switching to LLVM
DenseMap. This is perhaps not surprising, because Decl to Type mappings
are only needed during early compiler stages, but the intrusive
FoldingSetNode data decreases CPU cache efficiency during all compiler
stages. As a bonus, the resulting code is simpler.
Rather than eagerly doing a bunch of name lookups to establish the known
protocol kind, lazily match the ProtocolDecl to the list of known
protocols as-needed. This eliminates a bunch of up-front unqualified
name lookups when spinning up a type checker.
Sometimes constraint solver fails without producing any diagnostics,
it could happen during different phases e.g. pre-check, constraint
generation, or even while attempting to apply solution. Such behavior
leads to crashes down the line in AST Verifier or SILGen which are
hard to diagnose.
Let's guard against that by tracking if solver produced any diagnostics
upon its failure and if no errors were or are scheduled to be produced,
let's produce a fallback fatal error pointing at affected expression.
Resolves: rdar://problem/38885760
Context archetypes and opened existential archetypes differ in a number of details, and this simplifies the overlapping storage of the kind-specific fields. This should be NFC; for now, this doesn't change the interface of ArchetypeType, but should allow some refinements of how the special handling of certain archetypes are handled.
When debugging Objective-C or C++ code on Darwin, the debug info
collected by dsymutil in the .dSYM bundle is entirely
self-contained. It is possible to debug a program, set breakpoints and
print variables even without having the complete original source code
or a matching SDK available. With Swift, this is currently not the
case. Even though .dSYM bundles contain the binary .swiftmodule for
all Swift modules, any Clang modules that the Swift modules depend on,
still need to be imported from source to even get basic LLDB
functionality to work. If ClangImporter fails to import a Clang
module, effectively the entire Swift module depending on it gets
poisoned.
This patch is addressing this issue by introducing a ModuleLoader that
can ask queries about Clang Decls to LLDB, since LLDB knows how to
reconstruct Clang decls from DWARF and clang -gmodules producxes full
debug info for Clang modules that is embedded into the .dSYM budle.
This initial version does not contain any advanced functionality at
all, it merely produces an empty ModuleDecl. Intertestingly, even this
is a considerable improvement over the status quo. LLDB can now print
Swift-only variables in modules with failing Clang depenecies, and
becuase of fallback mechanisms that were implemented earlier, it can
even display the contents of pure Objective-C objects that are
imported into Swift. C structs obviously don't work yet.
rdar://problem/36032653
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done