Introduce ExtensionDecl::getExtendedNominal() to provide the nominal
type declaration that the extension declaration extends. Move most
of the existing callers of the callers to getExtendedType() over to
getExtendedNominal(), because they don’t need the full type information.
ExtensionDecl::getExtendedNominal() is itself not very interesting yet,
because it depends on getExtendedType().
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
More groundwork for protocols with superclass constraints.
In several places we need to distinguish between existential
types that have a superclass term (MyClass & Proto) and
existential types containing a protocol with a superclass
constraint.
This is similar to how I can write 'AnyObject & Proto', or
write 'Proto1 & Proto2' where Proto1 has an ': AnyObject'
in its inheritance clause.
Note that some of the usages will be revisited later as
I do more refactoring and testing. This is just a first pass.
The mangling of generic typealiases was using the underlying type’s generic
arguments rather than the generic arguments for the typealias itself.
Directly encode the generic arguments from the substitution map instead.
Also address some related issues with remangling generic typealiases.
Fixes rdar://problem/41444286.
Protocol name mangling didn’t always go through a path that allowed the use
of standard substitutions. Enable standard substitutions for protocol name
manglings where they make sense.
Removes ~277k from the standard library binary size.
Introduce some metaprogramming of accessors and generally prepare
for storing less-structured accessor lists.
NFC except for a change to the serialization format.
instead of using name and decl context.
The advantages of this approach are three-fold:
- This is necessary to support inlined generic functions.
- We can retire the debugger-specific type name manfgling mode for archetypes.
- This saves 270kb of debug information in the x86_64 libSwiftCore.dylib alone.
<rdar://problem/38306256>
More specifically, generic `typealias` type.
For instance:
typealias Pair<T, T> = (T, T)
typealias PairAlias = Pair
Interface type of `PairAlias` is `Pair.Type`, not `(T, T).Type`
Fixes crash in sourcekit cursorinfo.
rdar://problem/34348776
This doesn't have a specific effect now, because all of these places
are likely to only see NameAliasType, but it is refactoring with the
intent of eliminating NameAliasType entirely.
Introduce a new Type node, BoundNameAliasType, which describes a
reference to a typealias that requires substitutions to produce the
underlying type. This new type node is used both for references to
generic typealiases and for references to (non-generic) typealiases
that occur within generic contexts, e.g., Array<Int>.Element.
At present, the new type node is mainly useful in preserving type
sugar for diagnostics purposes, as well as being reflected in other
tools (indexing, code completion, etc.). The intent is to completely
replace NameAliasType in the future.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
This check doesn't make sense anymore because we are still making changes to the old remangler, but not to the old demangler.
Also, this check didn't work in most cases anyway.
rdar://problem/37241935
Also remove the decl from the known decls and remove a
bunch of code referencing that decl as well as a bunch of other
random things including deserialization support.
This includes removing some specialized diagnostics code that
matched the identifier ImplicitlyUnwrappedOptional, and tweaking
diagnostics for various modes and various issues.
Fixes most of rdar://problem/37121121, among other things.
A "retroactive" protocol conformance is a conformance that is provided
by a module that is neither the module that defines the protocol nor
the module that defines the conforming type. It is possible for such
conformances to conflict at runtime, if defined in different modules
that were not both visible to the compiler at the same time.
When mangling a bound generic type, also mangle retroactive protocol
conformances that were needed to satisfy the generic requirements of
the generic type. This prevents name collisions between (e.g.) types
formed using retroactive conformances from different modules. The
impact on the size of the mangling is expected to be relatively small,
because most conformances are not retroactive.
Fixes the ABI part of rdar://problem/14375889.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
...rather than the ad hoc CustomTypeNameManglingAttr I was using
before. As John pointed out, the AST should be semantic wherever
possible.
We may someday want to get out of this being an attribute altogether,
or duplicating information that's available in the original Clang
node, by actually storing a reference to that node somewhere. This is
tricky and mixed up with deciding what hasClangNode() or
getClangDecl() would mean, though, so for now the attribute just
carries the information we need.
(and 'La'...'Lj')
Use this for the synthesized structs for error enums, as described in
the previous commit, instead of reusing the "private discriminator"
feature. I left some space in the APIs for "related entity kinds" that
are longer than a single character, but I don't actually expect to use
it any time soon. It's mostly just easier to deal with StringRef than
with a bare char.
Note that this doesn't perfectly round-trip to the old mangling; I had
it treat these nodes as private discriminators with a prefixed "$"
instead. We don't depend on that for anything, though.
When importing a C enum with the ns_error_domain attribute, we
synthesize a struct containing an NSError object to represent errors
in that domain. That synthesized struct should have a mangled name
that ties it to the original C enum, if we want it to be stable, and
now it does.
Before: $SSC7MyErrorV (a normal struct, which is a lie)
After: $SSC11MyErrorCode13ns_error_enumLLV
kind=Global
kind=Structure
kind=Module, text="__C_Synthesized"
kind=PrivateDeclName
kind=Identifier, text="ns_error_enum"
kind=Identifier, text="MyErrorCode"
Using the "private discriminator" feature allows us to pack in extra
information about the declaration without changing the mangling
grammar, and without stepping on anything the importer is using.
More rdar://problem/24688918
This has three principal advantages:
- It gives some additional type-safety when working
with known accessors.
- It makes it significantly easier to test whether a declaration
is an accessor and encourages the use of a common idiom.
- It saves a small amount of memory in both FuncDecl and its
serialized form.
These aren't clang::TypedefNameDecls, but they should be treated like
them. There's not a great way to test this because the imported type
is a typealias and therefore not canonical, but fortunately debug info
preserves sugar.
...and "So" for the Swift-side representation of an Objective-C-side
conformance. These manglings are never used in public symbols, but
they're stil good to be consistent about.
This makes them consistent no matter what shenanigans are pulled by
the importer, particularly NS_ENUM vs. NS_OPTIONS and NS_SWIFT_NAME.
The 'NSErrorDomain' API note /nearly/ works with this, but the
synthesized error struct is still mangled as a Swift declaration,
which means it's not rename-stable. See follow-up commits.
The main place where this still falls down is NS_STRING_ENUM: when
this is applied, a typedef is imported as a unique struct, but without
it it's just a typealias for the underlying type. There's also still a
problem with synthesized conformances, which have a module mangled
into the witness table symbol even though that symbol is linkonce_odr.
rdar://problem/31616162
1) Move existing SyntaxSugarTypes under a new subclass called UnarySyntaxSugarType.
2) Make DictionaryType subclass SyntaxSugarType.
This helps improve getDesugaredType() performance by ensuring that
ImplOrContext is stored at the same field offset in memory.
This also de-boilerplates some AST walking.
Rather than storing contextual types in the type witnesses and associated
conformances of NormalProtocolConformance, store only interface types.
@huonw did most of the work here, and @DougGregor patched things up to
complete the change.