The `Qr` mangling is used to refer to the opaque type within the
declaration that produces the opaque type. When there are multiple
opaque types, e.g., due to structural or named opaque result types, it
does not specify which of the opaque type parameters it refers to.
Introduce a new mangling `QR INDEX` for opaque type parameters after
the first, retaining the `Qr` mangling for the first opaque type
parameter. This way, existing (non-structural) uses of opaque result
types retain the same manglings, but uses of structural or named
opaque result types (new features) will have distinct manglings.
Note that this mangling within a declaration is only used for the
declaration itself, and not for references to the opaque type of the
declaration, so there is no impact on the runtime demangler.
mangleOpaqueTypeDecl() used to enable DWARFMangling, which
ignores @_originallyDefinedIn, which would in turn break module
interfaces.
Fixes rdar://problem/86480663.
There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
The refactoring that moved the substitution of the outer environment
into an opaque type archeptype into the generic environment eliminated
the need for the bound signature entirely, so remove it.
We were always mangling based on the last generic parameter, which
makes sense when there is only one opaque result type, but is
incorrect when there are multiple opaque result types, e.g., due to
named or structural opaque result types.
A PackExpansionType is the interface type of the explicit expansion of a
corresponding set of variadic generic parameters.
Pack expansions are spelled as single-element tuples with a single variadic
component in most contexts except functions where they are allowed to appear without parentheses to match normal variadic declaration syntax.
```
func expand<T...>(_ xs: T...) -> (T...)
~~~~ ~~~~~~
```
A pack expansion type comes equipped with a pattern type spelled before
the ellipses - `T` in the examples above. This pattern type is the subject
of the expansion of the pack that is tripped when its variadic generic
parameter is substituted for a `PackType`.
A pack type looks a lot like a tuple in the surface language, except there
is no way for the user to spell a pack. Pack types are created by the solver
when it encounters an apply of a variadic generic function, as in
```
func print<T...>(_ xs: T...) {}
// Creates a pack type <String, Int, String>
print("Macs say Hello in", 42, " different languages")
```
Pack types substituted into the variadic generic arguments of a
PackExpansionType "trip" the pack expansion and cause it to produce a
new pack type with the pack expansion pattern applied.
```
typealias Foo<T...> = (T?...)
Foo<Int, String, Int> // Forces expansion to (Int?, String?, Int?)
```
The new type, called ExistentialType, is not yet used in type resolution.
Later, existential types written with `any` will resolve to this type, and
bare protocol names will resolve to this type depending on context.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
These restrictions are meant to keep placeholder types from escaping TypeCheckType. But there's really no harm in that happening as long as we diagnose it on the way out in the places it's banned. (We also need to make sure we're only diagnosing things in primaries, but that's a minor issue). The end result is that we lose information because a lot of the AST that has placeholders in it becomes filled with error types instead.
Lift the restriction on placeholders appearing in the interface type, teach the mangler to treat them as unresolved types, and teach serialization to treat them as error types.
Previously, we use USR as a delegate for mangled name. However, USR won't incorporate name changes made
by attributes like @_silgen_name. Instead, we should add a dedicated field for canonical mangled names.
rdar://84202064
Distributed thunks were using the same mangling as direct method
reference thunks (i.e., for "super" calls). Although not technically
conflicting so long as actors never gain inheritance, it's confusing
and could cause problems in the future. So, introduce a distinct
mangling for distributed thunks and plumb them through the demangling
and remangler.
Marker protocols don't exist at runtime, drop them when mangling a type
for the purposes of runtime type metadata or reflection. Fixes
rdar://82314404.
When back-deploying concurrency support, do not use the standard
substitutions for _Concurrency-defined types (such as `Task`) in type
metadata because older Swift runtimes will not be able to demangle
them. Instead, use the full mangled names so the runtime can still
demangle them appropriately.
Addresses rdar://82931890.
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
Only the first component is written in terms of the original generic signature;
subsequent components are written in terms of their protocol's generic signature,
<T where T : P>.
This pattern was really error-prone. I've fixed multiple bugs related
to CurGenericSignature not being set correctly at the right time, and
found another latent bug by inspection while doing this cleanup.
We used to represent the interface type of variadic parameters directly
with ArraySliceType. This was awfully convenient for the constraint
solver since it could just canonicalize and open [T] to Array<$T>
wherever it saw a variadic parameter. However, this both destroys the
sugaring of T... and locks the representation to Array<T>. In the
interest of generalizing this in the future, introduce
VariadicSequenceType. For now, it canonicalizes to Array<T> just like
the old representation. But, as you can guess, this is a new staging
point for teaching the solver how to munge variadic generic type bindings.
rdar://81628287
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.