polymorphic type when that type is nested within a generic type. The
type-checker still isn't ready to use these declarations in a sane way.
Swift SVN r2501
This is much more convenient for IRGen, and gives us a reasonable representation for a static
polymorphic function on a polymorphic type.
I had to hack up irgen::emitArrayInjectionCall a bit to make the rest of this patch work; John, please
revert those bits once emitCallee is fixed.
Swift SVN r2488
type. This has remarkably little effect on type checking, because the
destructors themselves are never referenced by the AST after initially
type-checking them.
Swift SVN r2474
including the weird implicit one-of element declarations that end up in struct
types. Teach overload resolution and the type-checking of
ConstructorRefExprs how to specialize these polymorphic function types.
Swift SVN r2473
polymorphic function type. For example, given
struct X<T> {
func f(a : T) -> Int { }
}
The type of X.f is
<T> (this : [byref] X<T>) -> (a : T) -> Int
If we have a call to f, e.g.,
var xi : X<Int>
xi.f(5)
it will be represented as X.f specialized to type
(this : [byref] X<Int>) -> (a : Int) -> Int
and then called with 'xi' (DotSyntaxCallExpr) and finally 5
(ApplyExpr). The actual deduction of arguments is not as clean as I'd
like, generic functions of generic classes are unsupported, static
functions are broken, and constructors/destructors are broken. Fixes
for those cases will follow.
Swift SVN r2470
type substitution for a nested type reference (Foo.Bar.Wibble) whose
substituted parent reference (Foo.Bar) yields an archetype can simply
look for the appropriate nested type in the archetype.
This allows us to eliminate the hideous ASTContext::AssociatedTypeMap
and simply the archetype builder.
Swift SVN r2438
method to initialize the members. This doesn't matter so much
for structs (the generated IR is essentially equivalent except for
small structs), but on classes, we don't want to make "new X" generate
code that knows about metadata/destructors/etc for the class X.
Also, make sure classes always have a constructor. (We haven't really
discussed the rules for implicitly declared constructors, so for now,
the rule is just "generate an implicit constructor if there is no
explicit constructor". We'll want to revisit this when we actually
design object construction.)
Swift SVN r2361
Add a couple other misc pieces necessary for semantic analysis of members of
generic types. We're now up to the point where we can actually construct a
useful AST for small testcases.
Swift SVN r2308
the various NominalDecl subclasses into a single NominalType* member
in NominalDecl. Use it to make TypeDecl::getDeclaredType() more
efficient/simpler, and simplify the ProtocolDecl/ProtocolType
interaction along the way.
No functionality change.
Swift SVN r2298
resolution. When we see a polymorphic function type, we substitute
"deducible generic parameter" types for each of the generic
parameters. Coercion then deduces those deducible generic parameter
types. This approach eliminates the confusion between the types used
in the definition (which must not be coerced) and the types used when
the generic function is referenced (which need to be coerced).
Note that there are still some terrible inefficiencies in our handling
of these types.
Swift SVN r2297
protocols the underlying type of the type alias shall conform to. This
isn't super-motivating by itself (one could extend the underying type
instead), but serves as documentation, makes typealiases provide the
same syntax as other nominal types in this regard, and will also be
used to specify requirements on associated types.
Swift SVN r2133
type is either a protocol type or a protocol composition type. The
long form of this query returns the minimal set of protocol
declarations required by that existential type.
Use the new isExistentialType() everywhere that we previously checked
just for ProtocolType, implementing the appropriate rules. Among other
things, this includes:
- Type coercion
- Subtyping relationship
- Checking of explicit protocol conformance
- Member name lookup
Note the FIXME for IR generation; we need to decide how we want to
encode the witnesses for the different protocols.
This is most of <rdar://problem/11548207>.
Swift SVN r2086
classes, with the same syntax as we have on protocols. This
inheritance specifies explicit conformance to a protocol.
Later, we can allow a class definition to have a single class type
within this list, when we introduce class inheritance.
Swift SVN r1862
[byref(implicit)], and rely on type coercion for the implicit object
argument to deal with the implicitness. This is one half of
<rdar://problem/11215969>.
The other half of <rdar://problem/11215969> requires us to invent some
syntax to allow increment/decrement/assignment to operate on lvalues
without requiring one to write '&'. There are two distinct ideas
gaining traction here:
- Adding an [assignment] attribute to these operators, which tells
us both that use of the operators is a statement (not an
expression) and that the byref argument (either on the left, or
the only argument).
- Allowing operators to be written as member functions, so that they
get the same treatment as "a.b".
The former seems like the better option.
Swift SVN r1819
from a protocol to a protocol it inherits. This is a far simpler
operation that the general type-erasure expression, so generate this
AST when we can.
Swift SVN r1813
protocol Document { var title : String }
protocol Versioning { func bumpVersion() }
protocol VersionedDocument : Document, Versioning { }
This commit covers the basic functionality of protocol inheritance, including:
- Parsing & AST representation
- Conforming to a protocol also requires conforming to its inherited
protocols
- Member lookup into a protocol also looks into its inherited
protocols (results are aggregated; there is no name hiding)
- Teach ErasureExpr to maintain lvalueness, so we don't end up
performing a silly load/erase/materialize dance when accessing
members from an inherited protocol.
Swift SVN r1804