Rather than waiting until type-checking, we can set the parents
immediately when we create the CaseStmt. This requires fixing up
NamingPatternRequest to look at the recursive parent statement as
now the VarDecl may have a variable parent.
Rather than handling this in the callers of `typeCheckExpression`,
handle it in the constraint system's invalidation logic. This also
ensures we set a type for sub-pattern nodes.
It wraps an type-checked `AvailabilitySpec`, which guarantees that the spec has
a valid `AvailabilityDomain` associated with it. This will unblock moving
AvailabilitySpec domain resolution from parsing to sema.
There are a few places in the AST where we use `uint64_t` as
`ArrayRef`'s size type. Even though of these `uint64_t` size fields are
actually defined as bitfields with a maximum value of 32, but
unfortunately it's not taken into account and clang complains about
the implicit cast.
The same attempt was made in 073905b573,
but several new places were added since then.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Avoid forming invalid source ranges when
`ReturnLoc` is invalid. Also introduce a utility
to make this kind of range computation easier,
and use it in a couple of other cases.
Previously, 'IntroducerLoc' and 'ThePattern' were only used for pattern
binidng cases. Create a new 'ConditionalPatternBindingInfo' type to
cover such cases, and make 'StmtConditionElement' a pure 'PointerUnion'
type.
This makes it clear which fields are used in which condition kind. Also,
we can expect overall size reduction of StmtCondition when the
majority of the conditions are simple boolean expressions.
Correctly determining the DeclContext needed for an
ExplicitCaughtTypeRequest is tricky for a number of callers, and
mistakes here can easily lead to redundant computation of the caught
type, redundant diagnostics, etc.
Instead, put a `DeclContext` into `DoCatchStmt`, because that's the
only catch node that needs a `DeclContext` but does not have one.
These two requests are effectively doing the same thing to two
different cases within CatchNode. Unify the requests into a single
request, ExplicitCaughtTypeRequest, which operates on a CatchNode.
This also moves the logic for closures with explicitly-specified throws
clauses into the same request, taking it out of the constraint system.
During the review of SE-0413, typed throws, the notion of a `do throws`
syntax for `do..catch` blocks came up. Implement that syntax and
semantics, as a way to explicitly specify the type of error that is
thrown from the `do` body in `do..catch` statement.
Introduce a new API to find the AST node that catches or rethrows an
error thrown from the given source location. Use it to determine the
thrown error type to use for type checking a `throw` statement, which
begins as `any Error` within a `do..catch` and is later refined.
The type that is caught by the `catch` clauses in a `do..catch` block is
determined by the union of the thrown error types in the `do`
statement. Compute this type and use it for the catch clauses. This
does several things at once:
* Makes the type of the implicit `error` be a more-specific concrete
type when all throwing sites throw that same type
* When there's a concrete type for the error, one can use patterns
like `.cancelled`
* Check that this error type can be rethrown in the current context
* Verify that SIL generation involving do..catch with typed errors
doesn't require any existentials.
These allow multi-statement `if`/`switch` expression
branches that can produce a value at the end by
saying `then <expr>`. This is gated behind
`-enable-experimental-feature ThenStatements`
pending evolution discussion.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
SE-390 concluded with choosing the keyword discard rather than forget for
the statement that disables the deinit of a noncopyable type. This commit
adds parsing support for `discard self` and adds a deprecation warning for
`_forget self`.
rdar://108859077
- Allow an if/switch expression to become an
implicit return of a function that has a `#if`
body with a single active element that is an `if`
or `switch`.
- Allow `#if` branches of an if/switch expression,
as long as there is a single active expression
element.
rdar://107487977
Currently, this is staged in as `_forget`,
as part of SE-390. It can only be used on
`self` for a move-only type within a consuming
method or accessor. There are other rules, see
Sema for the details.
A `forget self` really just consumes self and
performs memberwise destruction of its data.
Thus, the current expansion of this statement
just reuses what we inject into the end of a
deinit.
Parsing of `forget` is "contextual".
By contextual I mean that we do lookahead to
the next token and see if it's identifier-like.
If so, then we parse it as the `forget` statement.
Otherwise, we parse it as though "forget" is an
identifier as part of some expression.
This way, we won't introduce a source break for
people who wrote code that calls a forget
function.
This should make it seamless to change it from
`_forget` to `forget` in the future.
resolves rdar://105795731
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.