Temporarily disable replaying optimization remarks when cache hit.
Optimization remarks file are not setup to be cached because:
* the write of such files are not going through output backend
* when optimization remarks files are requested, it produces files that
are not intended to be produced in SupplementoryOutputs, which
confuses compiler when storing and loading compilation results, and
causes cache misses all the time when optimization remark file is
reuqested.
Disable optimization remarks for cache replay so it is currently only
produced when compiler actually did the compile locally.
It is technically possible for different threads trying to write output
files at the same time, e.g. multi-threaded WMO. It can cause a race
condition to update the output status in the CAS output backend. Use a
lock to protect the update and finalization of CAS entries.
Most of the logic for C++ foreign reference types can be applied to C types as well. Swift had a compiler flag `-Xfrontend -experimental-c-foreign-reference-types` for awhile now which enables foreign reference types without having to enable C++ interop. This change makes it the default behavior.
Since we don't expect anyone to pass `experimental-c-foreign-reference-types` currently, this also removes the frontend flag.
rdar://150308819
Move per-query state out of ScanningService. There is still a check to
make sure the CASOptions are matching between queries because of the
requirement on clang scanner. Otherwise, the scanning service should
contain no per-query information anymore.
Resolves: https://github.com/swiftlang/swift/issues/82490
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.
Add two new limits.
The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.
The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
This was used a long time ago for a design of a scanner which could rely on the client to specify that some modules *will be* present at a given location but are not yet during the scan. We have long ago determined that the scanner must have all modules available to it at the time of scan for soundness. This code has been stale for a couple of years and it is time to simplify things a bit by deleting it.
When building against the static standard library, we should define
`SWIFT_STATIC_STDLIB` to indicate to the shims that the declarations
should be giving hidden visibility and default DLL storage. This is
required to ensure that these symbols are known to be `dso_local` when
compiling to avoid an unnecessary look up through the PLT/GOT or the
indirection through the synthesized `__imp_` symbol and the IAT. This
corrects a number of incorrect code generation cases on Windows with the
static standard library.
Create a path that swift-frontend can execute an uncached job from
modules built with CAS based explicit module build. The new flag
-import-module-from-cas will allow an uncached build to load module
from CAS, and combined with source file from real file system to build
the current module. This allows quick iterations that bypasses CAS,
without full dependency scanning every time in between.
rdar://152441866
NFC *except* that I noticed a bug by inspection where we suppress
`@escaping` when print enum element types. Since this affects
recursive positions, we end up suppressing `@escaping` in places
we shouldn't. This is unlikely to affect much real code, but should
still obviously be fixed.
The new design is a little sketchy in that we're using `const` to
prevent direct use (and allow initialization of `const &` parameters)
but still relying on modification of the actual object. Essentially,
we are treating the `const`-ness of the reference as a promise to leave
the original value in the object after computation rather than a
guarantee of not modifying the object. This is okay --- a temporary
bound to a `const` reference is still a non-`const` object formally
and can be modified without invoking UB --- but makes me a little
uncomfortable.
The LeastValidPointerValue is hard-coded in the runtime.
Therefore this option is only available in embedded swift - which doesn't have a runtime.
rdar://151755654
Textual interfaces for 'Darwin' built with recent compilers specify that it is built witout C++ interop enabled. However, to ensure compatibility with versions of the 'Darwin' module built with older compilers, we hard-code this fact. This is required to break the module cycle that occurs when building the 'Darwin' module with C++ interop enabled, where the underlying 'Darwin' clang module depends on C++ standard library for which the compiler brings in the 'CxxStdlib' Swift overlay, which depends on 'Darwin'.
Ideally this would also update the `--version` output to be overridden
by `SWIFT_TOOLCHAIN_VERSION`, but unfortunately various tools rely on
the current format (eg. swift-build).
This feature is essentially self-migrating, but fit it into the
migration flow by marking it as migratable, adding
`-strict-memory-safety:migrate`, and introducing a test.
The following warnings get emitted every time we build the compiler libraries
that are implemented in Swift:
```
<unknown>:0: warning: ignoring -allow-non-resilient-access (overriden by -compile-module-from-interface or -typecheck-module-from-interface)
<unknown>:0: warning: ignoring -package-cmo (requires -allow-non-resilient-access)
<unknown>:0: warning: ignoring -allow-non-resilient-access (overriden by -compile-module-from-interface or -typecheck-module-from-interface)
<unknown>:0: warning: ignoring -package-cmo (requires -allow-non-resilient-access)
```
These warnings are generated because `-allow-non-resilient-access` and
`-package-cmo` are being passed in with `-Xfrontend` and are therefore copied
into the interface verification jobs, even though they don't apply. Suppress
the warnings under these circumstances; they aren't going to help anyone
understand a problem, so they're just spam.
Resolves rdar://151616909.
After removing the CASFS implementation for clang modules, there is no
need to capture clang extra file that sets up the VFS for the clang
modules since all content imported by ClangImporter is dependency
scanned and available via include-tree. This saves more ClangImporter
instance when caching is enabled.
Update the test to check that clang content found via `-Xcc` VFS options
can currently work without capture the headermaps and vfs overlays.
This is important to get diagnostics for errors which are located in imported modules.
Such errors can sometimes only be detected when building the client module, because the error can be in a generic function which is specialized in the client module.
rdar://151162353
Using IncludeTree::FileList to concat the include tree file systems that
are passed on the command-line. This significantly reduce the
command-line size, and also makes the cache key computation a lot
faster.
rdar://148752988
-nostdimport and -nostdlibimport only remove the toolchain and usr/lib/swift search paths, and they leave the framework search paths intact. That makes it impossible to get a fully custom SDK environment. Make their behavior match clang's -nostdinc/-nostdlibinc behavior: treat framework and non-framework paths the same. In other words, -nostdinc removes *all* compiler provided search paths, and -nostdlibinc removes *all* SDK search paths.
Rename SkipRuntimeLibraryImportPaths to SkipAllImportPaths, and ExcludeSDKPathsFromRuntimeLibraryImportPaths to SkipSDKImportPaths to reflect their updated behavior.
Move the DarwinImplicitFrameworkSearchPaths handling from SearchPathOptions to CompilerInvocation, where RuntimeLibraryImportPaths is managed. Rename it to just ImplicitFrameworkSearchPaths, and filter for Darwin when it's set up so that all of the clients don't have to do Darwin filtering themselves later.
rdar://150557632
Previously we would insert StringRefs that reference the keys in the
map, but that breaks if the invocation ever gets copied. Switch to
`std::string`.
rdar://148130166
With `ARCMigrate` and `arcmt-test` removed from clang in
https://github.com/llvm/llvm-project/pull/119269 and the new code
migration experience under way (see
https://github.com/swiftlang/swift-evolution/pull/2673), these options
are no longer relevant nor known to be in use. They were introduced
long ago to support fix-it application in Xcode.
For now, turn them into a no-op and emit a obsoletion warning.
Improve diagnostics message for swift caching build by trying to emit
the diagnostics early when there is more context to differentiate the
different kind of problems.
After the improvement, CAS Error should be more closer to when there is
functional problem with the CAS, rather than mixing in other kinds of
problem (like scanning dependency failures) when operating with a CAS.
rdar://145676736