Rather than outputting diagnostics and to stderr, output all the extra
information added when deserialization fatally fails to the pretty stack
trace instead. Since the pretty stack trace is added to crash logs, this
should avoid the dance of requesting the compiler output
- Moves the previous "**** DESERIALIZATION FAILURE ..." output to the
last pretty stack trace line
- Removes the module and compiler version notes added to the fatal
diagnostic
- Adds a new effective compiler version line for all frontend failure.
Somewhat duplicates the line from the driver, but adds in the
effective version
- Adds a new line for the full misc version of the module that failed.
May double up with previous "While reading from ..." lines that are
added in various deserialization methods, but better to have it
twice than not at all
It's currently not obvious in crash reports whether compiling with
errors is enabled or not. Since this option can make previously
"impossible" paths now possible, add a message to both the pretty stack
output and fatal deserialization diagnostics to point out that it is
enabled.
Gather 'round to hear tell of the saga of autolinking in incremental
mode.
In the beginning, there was Swift code, and there was Objective-C code.
To make one import bind two languages, a twinned Swift module named the same as an
Objective-C module could be imported as an overlay. But all was not
well, for an overlay could be created which had no Swift content, yet
required Swift symbols. And there was much wailing and gnashing of teeth
as loaders everywhere disregarded loading these content-less Swift
libraries.
So, a solution was found - a magical symbol _swift_FORCE_LOAD_$_<MODULE>
that forced the loaders to heed the dependency on a Swift library
regardless of its content. It was a constant with common linkage, and it
was good. But, along came COFF which needed to support autolinking but
had no support for such matters. It did, however, have support for
COMDAT sections into which we placed the symbol. Immediately, a darkness
fell across the land as the windows linker loudly proclaimed it had
discovered a contradiction: "_swift_FORCE_LOAD_$_<MODULE> cannot be
a constant!", it said, gratingly, "for this value requires rebasing."
Undeterred, we switched to a function instead, and the windows linker
happily added a level of indirection to its symbol resolution procedure
and all was right with the world.
But this definition was not all right. In order to support multiple
translation units emitting it, and to prevent the linker from dead
stripping it, Weak ODR linkage was used. Weak ODR linkage has the nasty
side effect of pessimizing load times since the dynamic linker must
assume that loading a later library could produce a more definitive
definition for the symbol.
A compromise was drawn up: To keep load times low, external linkage was
used. To keep the linker from complaining about multiple strong
definitions for the same symbol, the first translation unit in the
module was nominated to recieve the magic symbol. But one final problem
remained:
Incremental builds allow for files to be added or removed during the
build procedure. The placement of the symbol was therefore dependent
entirely upon the order of files passed at the command line. This was no
good, so a decree was set forth that using -autolink-force-load and
-incremental together was a criminal offense.
So we must compromise once more: Return to a symbol with common linkage,
but only on Mach-O targets. Preserve the existing COMDAT-friendly
approach everywhere else.
This concludes our tale.
rdar://77803299
When allowing errors with
-experimental-allow-module-with-compiler-errors, do not output the
.swiftinterface when there has been errors. There's no real need to
output them for invalid modules, so this avoids module interface
printing having to have checks for normally-impossible cases.
Resolves rdar://78039608.
Otherwise we set it on all targets/languages in a subdirectory (I forgot if it
propagates up). Regardless, this type of viral stuff is something we want to
move away from since it creates a code that is a "forall" piece of code rather
than a piece of code that only effects a single target.
I also conditionalized the actual definitions being added on the compiled file's
language being C,CXX,OBJC,OBJCXX since as we add Swift sources to the host side
of the compiler, we will not want these flags to propagate to Swift sources.
This mechanism allows the compiler to use a backup interface file to build into a binary module when
a corresponding interface file from the SDK is failing for whatever reasons. This mechansim should be entirely opaque
to end users except several diagnostic messages communicating backup interfaces are used.
Part of rdar://77676064
This will enable users to try out the '-enable-ossa-modules' flag if their
compiler supports it and get OSSA code on all inlinable code that they use. The
idea is that this is a nice way to stage this in and get more testing.
The specific implementation is that the module interface loader:
1. Knows if enable ossa modules is enabled not to search for any compiled
modules. We always rebuild from the interface file on the system.
2. Knows that if enable ossa modules is enabled to mixin a bit into the module
interface loader cache hash to ensure that we consider the specialized ossa
compiled modules to be different than the modules in that cache from the system.
This ensures that when said flag is enabled, the user transparently gets all
their code in OSSA form from transparent libraries.
In the legacy driver, these flags will merely be propagated to the
frontends to indicate that they should disable serialization of
incremental information in swift module files.
In the new driver, these flags control whether the Swift driver performs
an incremental build that is aware of metadata embedded in the module.
Kudos to David for coming up with our new marketing name: Incremental
Imports.
rdar://74363450
These new options mirror -o and -output-filelist and are used instead
of those options to supply the output file path(s) to record in the
index store. This is intended to allow sharing index data across
builds in separate directories that are otherwise equivalent as far
as the index data is concered (e.g. an ASAN build and a non-ASAN build)
by supplying the same -index-unit-output-path for both.
Resolves rdar://problem/74816412
Fix a longstanding bug in the driver where the incremental build would
fail to execute dependent jobs and allow errors in primaries in later
waves to become buried. A simplified version of a situation that exposes
this bug has been committed into the tests.
Imagine two files:
```
// one.swift
struct A {}
// two.swift
func use() {
let _ = A()
}
```
After a clean build, we modify one.swift as follows:
```
// one.swift
struct B< {}
```
The syntax error in this file caused the baseline driver to fail the
build immediately and thus we would not schedule two.swift for
execution. This is incorrect! Consider correcting the syntax error in
one.swift:
```
// one.swift
struct B {}
```
two.swift _still_ won't be rebuilt because
1) It was never modified during any step of this process
2) The swiftdeps of two.swift have not been updated to flush out the
dependency on A.
rdar://72800626
This library now relires on a static compiler library called `swiftDependencyScan`, which is also common to being used by `swift-frontend` for its dependency scanner invocations.
This commit refactors ScanDependencies.cpp to split the functionality into two functional groups:
- Scan execution code that performs the mechanics of the scan and produces an in-memory result
- Dependency scanner entry-points used when the scanning action is invoked as a `swift-frontend` execution mode
This commit also adds the aforementioned in-memory dependency scanning result in `FullDependencies.h`, modeled after the InterModuleDependencyGraph representation in swift-driver
It is now the responsibility of the scanDependencies code to instantiate (and share) the cache.
e.g. FrontendTool instantiates a new cache per `-scan-dependencies` invocation, and the DependencyScanningTool keeps one shared cache across its lifetime.
Introducing new entry-points that can be used from both Driver and Frontend clients, using an intermediary new type: `DetailedMessagePayload`, when needed.
Starting at a crude -1000, each invocation primary input will get its own unique quasi-Pid.
Invocations with only one primary (non-batch) will get a real OS Pid.
The selection of the constant starting point matches what the driver does when outputting its parseable output.
Follow programming guidelines for these getters more closely and have them return a non-owning view of the underlying data instead of relying on callers to take const references to the copy that is returned here.
T *const does not prevent logically non-const accesses to the underlying data, it merely indicates that the pointer value itself is const. This modifier can be cast off by a copy, so it's not generally what you want here. Switch to const T * instead.