rdar://129359370
Second part of direct error support. This implements direct errors for async functions. Instead of always returning typed errors indirectly, we are returning them directly when possible.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
It needs to match with the (large loadable) lowered closure type in the rest of
the program: Large types in the signature need to be passed indirectly.
rdar://127367321
getVarInfo() now always returns a variable with a location and scope.
To opt out of this change, getVarInfo(false) returns an incomplete variable.
This can be used to work around bugs, but should only really be used for
printing.
The complete var info will also contain the type, except for debug_values,
as its type depends on another instruction, which may be inconsistent if
called mid-pass.
All locations in debug variables are now also stripped of flags, to avoid
issues when comparing or hashing debug variables.
There is a debug-build-only verification that is done for
alloc_pack_metadata instructions that checks that there exist paired
dealloc_pack_metadata instructions which will be keyed off of to clean
up the on-stack variadic metadata packs corresponding to (the
instruction after) the alloc_pack_metadata.
StackNesting omits the deallocation instruction (as does
PackMetadataMarkerInserter) if it would be created in a dead end block.
If all blocks in the dominance frontier of the alloc_pack_metadata
instruction are dead-end blocks, then the verification will incorrectly
fail. It should not fail because it is not necessary to clean up the
on-stack pack metadata (or any other stack allocations) in such a case.
If all such blocks are dead-end blocks, however, the
alloc_pack_metadata's block itself is a dead-end block as well. So
during the verification, check whether the alloc_pack_metadata occurs in
a dead-end block and do not fail verification if it does.
rdar://125265980
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
Typed pointers are slowly being removed. There's a lot more cleanup to
do here, since really all `IRGenModule::.*PtrTy` should just be `PtrTy`,
but this at least gets us compiling for now.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.