There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
Direct pointer to the accessor cannot be called at runtime,
so here is how everything is stored:
- For `distributed` and `async` functions -> async function pointer;
- For regular functions -> function pointer.
Uses a dedicated section in the binary to emit records about
functions that can be looked up by name at the runtime, and
then called through a fully-abstracted entry point whose
arguments can be constructed in code.
Instead of using the distributed method directly, let's always
call distributed thunk instead which is safe option because
actor could not be local (e.g. issue with routing) but only
distributed thunk would know that and take appropriate action.
This instruction is similar to a copy_addr except that it marks a move of an
address that has to be checked. In order to keep the memory lifetime verifier
happy, the semantics before the checker runs are the mark_unresolved_move_addr is
equivalent to copy_addr [init] (not copy_addr [take][init]).
The use of this instruction is that Mandatory Inlining converts builtin "move"
to a mark_unresolved_move_addr when inlining the function "_move" (the only
place said builtin is invoked).
This is then run through a special checker (that is later in this PR) that
either proves that the mark_unresolved_move_addr can actually be a move in which
case it converts it to copy_addr [take][init] or if it can not be a move, emit
an error and convert the instruction to a copy_addr [init]. After this is done
for all instructions, we loop back through again and emit an error on any
mark_unresolved_move_addr that were not processed earlier allowing for us to
know that we have completeness.
NOTE: The move kills checker for addresses is going to run after Mandatory
Inlining, but before predictable memory opts and friends.
Required for UnsafeRawPointer.withMemoryReboud(to:).
%out_token = rebind_memory %0 : $Builtin.RawPointer to %in_token
%0 must be of $Builtin.RawPointer type
%in_token represents a cached set of bound types from a prior memory state.
%out_token is an opaque $Builtin.Word representing the previously bound
types for this memory region.
This instruction's semantics are identical to ``bind_memory``, except
that the types to which memory will be bound, and the extent of the
memory region is unknown at compile time. Instead, the bound-types are
represented by a token that was produced by a prior memory binding
operation. ``%in_token`` must be the result of bind_memory or
The functions in llvm-project `AttributeList` have been
renamed/refactored to help remove uses of `AttributeList::*Index`.
Update to use these new functions where possible. There's one use of
`AttrIndex` remaining as `replaceAttributeTypeAtIndex` still takes the
index and there is no `param` equivalent. We could add one locally, but
presumably that will be added eventually.
The key thing is that the move checker will not consider the explicit copy value
to be a copy_value that can be rewritten, ensuring that any uses of the result
of the explicit copy_value (consuming or other wise) are not checked.
Similar to the _move operator I recently introduced, this is a transparent
function so we can perform one level of specialization and thus at least be
generic over all concrete types.
Define the possible runtime effects of an instruction in an enum `RuntimeEffect`.
Add a new utility `swift:getRuntimeEffect` to estimate the runtime effects of an instruction.
Also, add a mechanism to validate the correctness of the analysis in IRGen: annotate all runtime functions in RuntimeFunctions.def with the actual effect what the runtime function has or can have. Then check if the effects of emitted runtime functions for an instruction match what `getRuntimeEffect` predicts.
This check is only enabled on demand by defining the CHECK_RUNTIME_EFFECT_ANALYSIS macro in RuntimeEffect.h
Adds two new IRGen-level builtins (one for allocating, the other for deallocating), a stdlib shim function for enhanced stack-promotion heuristics, and the proposed public stdlib functions.
This enables optimizing / dead-stripping of witness methods across modules at
LTO time.
- Under -internalize-at-link, restrict visibility of wtables to linkage unit.
- Emit thunks for cross-module wcalls when WME is enabled.
- Use thunks for wcalls across modules when WME is enabled.
- Adjust TBDGen to account for witness method thunks when WME is enabled.
- Add an IR test to check that thunks are used when doing cross-module calls.
- Add an end-to-end test case for cross-module WME.
When we deploy to a minimum target that is not known to support extended
frame information the function prolog of Swift async functions will
contain a reference to swift_async_extendedFramePointerFlags. This
reference needs to be weak like any async symbols.
rdar://83412550
- Under -internalize-at-link, stop unconditionally marking all globals as used.
- Under -internalize-at-link, restrict visibility of vtables to linkage unit.
- Emit virtual method thunks for cross-module vcalls when VFE is enabled.
- Use thunks for vcalls across modules when VFE is enabled.
- Adjust TBDGen to account for virtual method thunks when VFE is enabled.
- Add an end-to-end test case for cross-module VFE.
Support for addresses with arbitrary alignment as opposed to their
element type's natural in-memory alignment.
Required for bytestream encoding/decoding without resorting to memcpy.
SIL instruction flag, documentation, printing, parsing, serialization,
and IRGen.
This is a new instruction that can be used by SILGen to perform a semantic move
in between two entities that are considered separate variables at the AST
level. I am going to use it to implement an experimental borrow checker.
This PR contains the following:
1. I define move_value, setup parsing, printing, serializing, deserializing,
cloning, and filled in all of the visitors as appropriate.
2. I added createMoveValue and emitMoveValueOperation SILBuilder
APIs. createMoveValue always creates a move and asserts is passed a trivial
type. emitMoveValueOperation in contrast, will short circuit if passed a
trivial value and just return the trivial value.
3. I added IRGen tests to show that we can push this through the entire system.
This is all just scaffolding for the instruction to live in SIL land and as of
this PR doesn't actually do anything.
Later stages use the name to disambiguate variables and this amgiguity
can lead to incorrect debug info that crashes LLVM. This also makes
the artificial variable names visible in textual SIL output.
rdar://82313550
This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.
Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
This new SIL di-expression represents the dereference on the SSA value.
Similar to DW_OP_deref in DWARF. It is also going to replace the
existing `debug_value_addr`. Namely, replacing the following
instruction:
```
debug_value_addr %a : $*T, name "my_var"
```
with this one:
```
debug_value %a : $*T, name "my_var", expr op_deref
```
Just for convenicence.
* Replace `llvm::isa_and_nonnull` with imported `isa_and_nonnull`
* Repalce some `EXPR && isa<T>(EXPR)` with `isa_and_nonnull<T>(EXPR)`
This commit is similar to cbb89c78d, but for explosions. emitShadowCopyIfNeeded()
has some extra code that was added when function arguments were moved out of the
async context to ensure that they are being lifetime-extended, and there is also
code that generates an incorrect load from the shadow copy. However,
emitShadowCopyIfNeeded is supposed return either an alloca or the value, and
IRGenDebugInfo knows to describe the value in the alloca already. The load is
counterproductive it's only valid until whatever register it ends up in is
clobbered, whereas the alloca is valid throughout the function.
This patch removes the load and updates the tests accordingly.
rdar://81565869
emitShadowCopyIfNeeded has some extra code that was added when function
arguments were moved out of the async context to ensure that they are being
lifetime-extended, and there is also code that generates an incorrect load from
the shadow copy. However, emitShadowCopyIfNeeded is supposed return either an
alloca or the value, and IRGenDebugInfo knows to describe the value in the
alloca already. The load is counterproductive it's only valid until whatever
register it ends up in is clobbered, whereas the alloca is valid throughout the
function.
This patch removes the load and updates the tests accordingly.
rdar://81805727