For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
Specifically, I made it so that assuming our instruction is inserted into a
block already that we:
1. Return a constraint of {OwnershipKind::Any, UseLifetimeConstraint::NonLifetimeEnding}.
2. Return OwnershipKind::None for all values.
Noticed above I said that if the instruction is already inserted into a block
then we do this. The reason why is that if this is called before an instruction
is inserted into a block, we can't get access to the SILFunction that has the
information on whether or not we are in OSSA form. The only time this can happen
is if one is using these APIs from within SILBuilder since SILBuilder is the
only place where we allow this to happen. In SILBuilder, we already know whether
or not our function is in ossa or not and already does different things as
appropriate (namely in non-ossa does not call getOwnershipKind()). So we know
that if these APIs are called in such a situation, we will only be calling it if
we are in OSSA already. Given that, we just assume we are in OSSA if we do not
have a function.
To make sure that no mistakes are made as a result of that assumption, I put in
a verifier check that all values when ownership is disabled return a
OwnershipKind::None from getOwnershipKind().
The main upside to this is this means that we can write code for both
OSSA/non-OSSA and write code for non-None ownership without needing to check if
ownership is enabled.
This makes it easier to understand conceptually why a ValueOwnershipKind with
Any ownership is invalid and also allowed me to explicitly document the lattice
that relates ownership constraints/value ownership kinds.
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.
I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
a macro (sil_register_sources) to the sub-folders that register the sources of
the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
defines. Then after including those subdirs, the parent cmake declares the SIL
library. So the output is the same, but we have the flexibility of having
subdirectories to categorize source files.