We should use the source location of the call site, and not the enum
element declaration, otherwise we emit incorrect debug info.
Fixes <rdar://problem/63067437>.
This became necessary after recent function type changes that keep
substituted generic function types abstract even after substitution to
correctly handle automatic opaque result type substitution.
Instead of performing the opaque result type substitution as part of
substituting the generic args the underlying type will now be reified as
part of looking at the parameter/return types which happens as part of
the function convention apis.
rdar://62560867
Now that curry thunks are gone, we can do a bit more refactoring
to guarantee that an ApplyExpr always has the *exact* number of
call sites expected.
Extra call sites are handled by emitting the innermost ApplyExpr
as an indirect callee, eliminating a special code path.
Now that CSApply transforms partial applications into closures,
we never see AST with partially-applied method calls. So all the
machinery for emitting curry thunks is now gone.
This fixes an immediate bug with subst-to-orig conversion of
parameter functions that I'm surprised isn't otherwise tested.
More importantly, it preserves valuable information that should
let us handle a much wider variety of variant representations
that aren't necessarily expressed in the AbstractionPattern.
If we're emitting a designated constructor inside a constrained extension,
we have to use the correct substitution map for calling the property wrapper
backing initializer.
Factor out the computation of this substitution map and use it consistently.
Fixes <rdar://problem/59245068>.
Even if differently-substituted function types have different value representations,
we can still share reabstraction and bridging thunks among types that are equivalent after
substitution, so handle these by generating thunks in terms of the unsubstituted type and
converting to the needed substitution form at the use site.
Motivation: `GenericSignatureImpl::getCanonicalSignature` crashes for
`GenericSignature` with underlying `nullptr`. This led to verbose workarounds
when computing `CanGenericSignature` from `GenericSignature`.
Solution: `GenericSignature::getCanonicalSignature` is a wrapper around
`GenericSignatureImpl::getCanonicalSignature` that returns the canonical
signature, or `nullptr` if the underlying pointer is `nullptr`.
Rewrite all verbose workarounds using `GenericSignature::getCanonicalSignature`.
Complete the refactoring by splitting the semantic callers for the original decl of a dynamically replaced declaration.
There's also a change to the way this attribute is validated and placed. The old model visited the attribute on any functions and variable declarations it encountered in the primary. Once there, it would strip the attribute off of variables and attach the corresponding attribute to each parsed accessor, then perform some additional ObjC-related validation.
The new approach instead leaves the attribute alone. The request exists specifically to perform the lookups and type matching required to find replaced decls, and the attribute visitor no longer needs to worry about revisiting decls it has just grafted attributes onto. This also means that a bunch of parts of IRGen and SILGen that needed to fan out to the accessors to ask for the @_dynamicReplacement attribute to undo the work the type checker had done can just look at the storage itself. Further, syntactic requests for the attribute will now consistently succeed, where before they would fail dependending on whether or not the type checker had run - which was generally not an issue by the time we hit SIL.
The hook is intended to be used by debuggers to catch the point a `throw` happened in user source. It's unnecessary and undesirable to hook in places where an already-thrown error is just being implicitly propagated.
This commit changes how we represent caller-side
default arguments within the AST. Instead of
directly inserting them into the call-site, use
a DefaultArgumentExpr to refer to them indirectly.
The main goal of this change is to make it such
that the expression type-checker no longer cares
about the difference between caller-side and
callee-side default arguments. In particular, it
no longer cares about whether a caller-side
default argument is well-formed when type-checking
an apply. This is important because any
conversions introduced by the default argument
shouldn't affect the score of the resulting
solution.
Instead, caller-side defaults are now lazily
type-checked when we want to emit them in SILGen.
This is done through introducing a request, and
adjusting the logic in SILGen to be more lenient
with ErrorExprs. Caller-side defaults in primary
files are still also currently checked as a part
of the declaration by `checkDefaultArguments`.
Resolves SR-11085.
Resolves rdar://problem/56144412.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Due to insufficiently robust argument emission code, certain combinations of language features could cause a call to a property wrapper backing initalizer to have mismatched argument types, causing an assertion failure in SILGenApply. This commit moves SILGenFunction::emitApplyOfPropertyWrapperBackingInitializer() into SILGenApply so it can use CallEmission and PreparedArguments to emit the call with full generality. Fixes rdar://problem/55995892.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
Use the newly-introduced property wrapper backing initializer function
in definite initialization (DI) to form the assign_by_wrapper
instruction, rather than forming a reference to the (only) property
wrapper's `init(wrappedValue:)`. This allows DI to work on properties
that have multiple, composed property wrappers applied to them.
TLDR: This patch introduces a new kind of builtin, "a polymorphic builtin". One
calls it like any other builtin, e.x.:
```
Builtin.generic_add(x, y)
```
but it has a contract: it must be specialized to a concrete builtin by the time
we hit Lowered SIL. In this commit, I add support for the following generic
operations:
Type | Op
------------------------
FloatOrVector |FAdd
FloatOrVector |FDiv
FloatOrVector |FMul
FloatOrVector |FRem
FloatOrVector |FSub
IntegerOrVector|AShr
IntegerOrVector|Add
IntegerOrVector|And
IntegerOrVector|ExactSDiv
IntegerOrVector|ExactUDiv
IntegerOrVector|LShr
IntegerOrVector|Mul
IntegerOrVector|Or
IntegerOrVector|SDiv
IntegerOrVector|SRem
IntegerOrVector|Shl
IntegerOrVector|Sub
IntegerOrVector|UDiv
IntegerOrVector|Xor
Integer |URem
NOTE: I only implemented support for the builtins in SIL and in SILGen. I am
going to implement the optimizer parts of this in a separate series of commits.
DISCUSSION
----------
Today there are polymorphic like instructions in LLVM-IR. Yet, at the
swift and SIL level we represent these operations instead as Builtins whose
names are resolved by splatting the builtin into the name. For example, adding
two things in LLVM:
```
%2 = add i64 %0, %1
%2 = add <2 x i64> %0, %1
%2 = add <4 x i64> %0, %1
%2 = add <8 x i64> %0, %1
```
Each of the add operations are done by the same polymorphic instruction. In
constrast, we splat out these Builtins in swift today, i.e.:
```
let x, y: Builtin.Int32
Builtin.add_Int32(x, y)
let x, y: Builtin.Vec4xInt32
Builtin.add_Vec4xInt32(x, y)
...
```
In SIL, we translate these verbatim and then IRGen just lowers them to the
appropriate polymorphic instruction. Beyond being verbose, these prevent these
Builtins (which need static types) from being used in polymorphic contexts where
we can guarantee that eventually a static type will be provided.
In contrast, the polymorphic builtins introduced in this commit can be passed
any type, with the proviso that the expert user using this feature can guarantee
that before we reach Lowered SIL, the generic_add has been eliminated. This is
enforced by IRGen asserting if passed such a builtin and by the SILVerifier
checking that the underlying builtin is never called once the module is in
Lowered SIL.
In forthcoming commits, I am going to add two optimizations that give the stdlib
tool writer the tools needed to use this builtin:
1. I am going to add an optimization to constant propagation that changes a
"generic_*" op to the type of its argument if the argument is a type that is
valid for the builtin (i.e. integer or vector).
2. I am going to teach the SILCloner how to specialize these as it inlines. This
ensures that when we transparent inline, we specialize the builtin automatically
and can then form SSA at -Onone using predictable memory access operations.
The main implication around these polymorphic builtins are that if an author is
not able to specialize the builtin, they need to ensure that after constant
propagation, the generic builtin has been DCEed. The general rules are that the
-Onone optimizer will constant fold branches with constant integer operands. So
if one can use a bool of some sort to trigger the operation, one can be
guaranteed that the code will not codegen. I am considering putting in some sort
of diagnostic to ensure that the stdlib writer has a good experience (e.x. get
an error instead of crashing the compiler).
Unfortuantely this commit is bigger than I would like but I couldn't think
of any reasonable ways to split it up.
The general idea here is that capture computation is now done for a
SILDeclRef and not an AnyFunctionRef. This allows SIL to represent the
captures of a default argument generator.
This mostly requires changing various entry points to pass around a
TypeConverter instead of a SILModule. I've left behind entry points
that take a SILModule for a few methods like SILType::subst() to
avoid creating even more churn.
Double-underscored names are reserved for the C++ "implementation"
(language and standard library). Even though "__Consuming" isn't
likely to be part of the C++ standard any time soon, we should follow
the rules.
Note that the API digester will continue to use the string
"__Consuming" for now, even though the underscores aren't really
significant, to avoid invalidating existing dumps.
No functionality change.
Since the return value of getAccessor() depends on mutable state, it
does not make sense in the request evaluator world. Let's begin by
removing some utility methods derived from getAccessor(), replacing
calls to them with calls to getAccessor().
This improves on the previous situation:
- The request ensures that the backing storage for lazy properties
and property wrappers gets synthesized first; previously it was
only somewhat guaranteed by callers.
- Instead of returning a range this just returns an ArrayRef,
which simplifies clients.
- Indexing into the ArrayRef is O(1), which addresses some FIXMEs
in the SIL optimizer.