closures.
The fixes for initializers are just setting the stage for doing this
properly: we should be able to just change the isolation computation
in Sema and fix up the tests.
We were not able to use an existential as the base
of an access that strictly borrows the existential,
because SILGen's RValue emission would establish
a fresh evaluation scope just for the existential's
opening, and then copy the opened value out.
This is problematic for noncopyable existentials.
So this patch moves & adds FormalEvaluationScope's
around so they're broad enough to enable a
borrow of an existential. The idea behind this
refactoring is to establish top-level
FormalEvaluationScopes when initially creating
RValue's for Expr's in SILGen. Any more-tightly
scoped operations will already establish their own
nested scope, so this is mostly adding safe-guards.
I've limited the existentials fix to noncopyables
for now.
part of rdar://159079818
If a subscript uses a read accessor to yield a noncopyable value,
we'd emit an `end_apply` that's too tightly scoped to allow for
a subsequent borrowing access on the yielded value.
resolves rdar://159079818
At the same time, make sure we propagate contextual initializations.
I'm actually not sure this is meant to be supported, but it's fine,
we should implement it.
Fixes#80937
The constraint solver does not reliably give closures a function type
that includes `nonisolated(noncaller)`, even when the immediate context
requires a conversion to such a type. We were trying to work around this
in SILGen, but the peephole only kicked in if the types matched exactly,
so a contextual conversion that e.g. added `throws` was still emitting
the closure as `@concurrent`, which is of course the wrong semantics.
It's relatively easy to avoid all this by just rewriting the closure's
type to include `nonisolated(nonsending)` at a point where we can reliably
decide that, and then SILGen doesn't have to peephole anything for
correctness.
Fixes rdar://155313349
The reason why this failed is that concurrently to @xedin landing
79af04ccc4, I enabled
NonisolatedNonsendingByDefault on a bunch of other tests. That change broke the
test and so we needed to fix it.
This commit fixes a few issues that were exposed:
1. We do not propagate nonisolated(nonsending) into a closure if its inferred
context isolation is global actor isolated or if the closure captures an
isolated parameter. We previously just always inferred
nonisolated(nonsending). Unfortunately since we do not yet have capture
information in CSApply, this required us to put the isolation change into
TypeCheckConcurrency.cpp and basically have function conversions of the form:
```
(function_conversion_expr type="nonisolated(nonsending) () async -> Void"
(closure_expr type="() async -> ()" isolated_to_caller_isolation))
```
Notice how we have a function conversion to nonisolated(nonsending) from a
closure expr that has an isolation that is isolated_to_caller.
2. With this in hand, we found that this pattern caused us to first thunk a
nonisolated(nonsending) function to an @concurrent function and then thunk that
back to nonisolated(nonsending), causing the final function to always be
concurrent. I put into SILGen a peephole that recognizes this pattern and emits
the correct code.
3. With that in hand, we found that we were emitting nonisolated(nonsending)
parameters for inheritActorContext functions. This was then fixed by @xedin in
With all this in hand, closure literal isolation and all of the other RBI tests
with nonisolated(nonsending) enabled pass.
rdar://154969621
When accessing stored properties out of an addressable variable or parameter
binding, the stored property's address inside the addressable storage of the
aggregate is itself addressable. Also, if a computed property is implemented
using an addressor, treat that as a sign that the returned address should be
used as addressable storage as well. rdar://152280207
Instead of passing in the substituted type, we pass in the
InFlightSubstitution. This allows the substituted type to be
recovered if needed, but we can now skip computing it for
the common case of LookUpConformanceInSubstitutionMap.
Don't bind references to storage to use (new ABI) coroutine accessors
unless they're guaranteed to be available. For example, when building
against a resilient module that has coroutine accessors, they can only
be used if the deployment target is >= the version of Swift that
includes the feature.
rdar://148783895
Avoids an assertion failure emitting an `explicit_copy_value` on the trivial
value, which is unsupported. This allows `copy x` to compile, albeit with
no effect (which is not ideal, but also not a regression, since no-implicit-copy
controls still don't fully work on trivial values). Fixes#80573 and rdar://148712387.
Specifically:
1. I made it so that thunks from caller -> concurrent properly ignore the
isolated parameter of the thunk when calling the concurrent function.
rdar://148112362
2. I made it so that thunks from concurrent -> caller properly create a
Optional<any Actor>.none and pass that into the caller function.
rdar://148112384
3. I made it so that in cases where we are assigning an @Sendable caller to a
non-sendable caller variable, we allow for the conversion as long as the
parameters/results are sendable as well.
rdar://148112532
4. I made it so that when we generate a thunk from @execution(caller) ->
@GlobalActor, we mangle in @GlobalActor into the thunk.
rdar://148112569
5. I discovered that due to the way we handle function conversion expr/decl ref
expr, we were emitted two thunks when we assigned a global @caller function to a
local @caller variable. The result is that we would first cast from @caller ->
@concurrent and then back to @caller. The result of this would be that the
@caller function would always be called on the global queue.
rdar://148112646
I also added a bunch of basic tests as well that showed that this behavior was
broken.
At one point, OpenedArchetypeType did not exist as a separate subclass
of ArchetypeType, so this method did something. Now, it's just
equivalent to calling is<> or isa<>.
I also removed a couple of asserts that were obvious no-ops as a result.