As per John, WritebackScope was always an unfortunate name. Generally these
scopes are meant for formal evaluations of inout parameters. The cases that I am
interested in generalizing them to be used for are borrows of the base of a
class that will then be used as an lvalue.
This also eliminates the out of line vector of lvalue writebacks.
rdar://29791263
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
This is useful to discover when a specific cleanup is being eliminated while
debugging. The implementation is compiled out when assertions are disabled.
rdar://29791263
new API called ManagedValue::unmanagedBorrow() for places where we were really trying to model
an exclusive borrow.
ManagedValue::unmanagedBorrow() is just the old implementation.
rdar://29791263
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
This is a small cleanup where we are creating a cleanup for an uninitialized
buffer that will be verified as initialized later by DI and then creating a +0
unmanaged ManagedValue for the value.
This violates the "norms" of using ManagedValue in SILGen which is that one
should use the SILGenFunction::emitManaged* methods for creating/propagating
cleanups around.
Most of this involved sprinkling ValueOwnershipKind::Owned in many places. In
some of these places, I am sure I was too cavalier and I expect some of them to
be trivial. The verifier will help me to track those down.
On the other hand, I do expect there to be some places where we are willing to
accept guaranteed+trivial or owned+trivial. In those cases, I am going to
provide an aggregate ValueOwnershipKind that will then tell SILArgument that it
should disambiguate using the type. This will eliminate the ackwardness from
such code.
I am going to use a verifier to fix such cases.
This commit also begins the serialization of ValueOwnershipKind of arguments,
but does not implement parsing of value ownership kinds. That and undef are the
last places that we still use ValueOwnershipKind::Any.
rdar://29791263
Fixes rdar://21782689: "Swift over-releases NSString when bridging".
The NSString -> String bridging function takes its input at +1 (@owned),
but the compiler seemed to be assuming it should be +0. The solution is
to make the compiler do a proper copy, rather than a borrow.
We preserve the current behavior of assuming Any ownership always and use
default arguments to hide this change most of the time. There are asserts now in
the SILBasicBlock::{create,replace,insert}{PHI,Function}Argument to ensure that
the people can only create SILFunctionArguments in entry blocks and
SILPHIArguments in non-entry blocks. This will ensure that the code in tree
maintains the API distinction even if we are not using the full distinction in
between the two.
Once the verifier is finished being upstreamed, I am going to audit the
createPHIArgument cases for the proper ownership. This is b/c I will be able to
use the verifier to properly debug the code. At that point, I will also start
serializing/printing/parsing the ownershipkind of SILPHIArguments, but lets take
things one step at a time and move incrementally.
In the process, I also discovered a CSE bug. I am not sure how it ever worked.
Basically we replace an argument with a new argument type but return the uses of
the old argument to refer to the old argument instead of a new argument.
rdar://29671437
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This simplifies the SILType substitution APIs and brings them in line with Doug and Slava's refactorings to improve AST-level type substitution. NFC intended.
The RValue(ArrayRef<ManagedValue>, CanType) constructor was intended as a semi-private interface for building an RValue from a pre-exploded array of elements, but was (understandably) widely being misused as a general ManagedValue-to-RValue constructor, causing crashes when working with tuples in various contexts where RValue's methods expected them to be exploded. Make the constructor private and update most improper uses of it to use the exploding RValue constructor, or to use a new `RValue::withPreExplodedElements` static method that more explicitly communicates the intent of the constructor. Fixes rdar://problem/29500731.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
I am removing these usages of this API since it conflicts with SILGen's want to
hold onto copy_value return values for ownership propagation purposes. If any of
the copy_value are folded, the reference that SILGen holds onto will be
invalid.
rdar://28685236
Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
This patch is rather large, since it was hard to make this change
incrementally, but most of the changes are mechanical.
Now that we have a lighter-weight data structure in the AST for mapping
interface types to archetypes and vice versa, use that in SIL instead of
a GenericParamList.
This means that when serializing a SILFunction body, we no longer need to
serialize references to archetypes from other modules.
Several methods used for forming substitutions can now be moved from
GenericParamList to GenericEnvironment.
Also, GenericParamList::cloneWithOuterParameters() and
GenericParamList::getEmpty() can now go away, since they were only used
when SILGen-ing witness thunks.
Finally, when printing generic parameters with identical names, the
SIL printer used to number them from highest depth to lowest, by
walking generic parameter lists starting with the innermost one.
Now, ambiguous generic parameters are numbered from lowest depth
to highest, by walking the generic signature, which means test
output in one of the SILGen tests has changed.
This is the first, and most trivial, usage of the new
GenericSignature::getSubstitutions() method.
Note that getForwardingSubstitutions() now takes a
GenericSignature, which is slightly awkward.
However, this is in line with our goal of 'hollowing out'
GenericParamList by removing knowledge of the finalized
generic requirements.
Also, there is now a new getForwardingSubstitutionMap()
function, which returns an interface type substitution
mapping. This is used in the new getForwardingSubstitutions()
implementation, and all also be used elsewhere later.
Finally, in the SILFunction we now cache the forwarding
substitutions, instead of re-computing them every time.
I doubt this makes a big difference in performance, but
it's a simple enhancement and every little bit helps.
If a behavior has storage that can be initialized out-of-line, generate code in SILGen that uses stores to mark_uninitialized_behavior for eventual analysis by DI.
This is incomplete, particularly, it's missing code generation of glue thunks for accessors that require reabstraction, but I wanted to make sure the progress here didn't bitrot.
emitLValue always has to occur in a writeback scope, even if the lvalue isn't formally accessed until later, because some lvalue productions immediately access their parent lvalue expression (namely optional chaining expressions). Fixes rdar://problem/26642478.
The function pointer is a thin function and possibly polymorphic,
so it does not really have an AST type. Instead of pretending it has
an AST type, just return a RawPointer and remove some casts in the
process.
Now that we apply the callback with the correct generic signature, the
assert can go away. It was being triggered if the protocol extension was
defined in a different resilience domain; otherwise we prefer direct
access anyway.
Note that materializeForSet now has to be able to re-abstract Self when
invoking the callback, since we might have to go from a thin metatype
to a thick metatype.
We will sometimes emit materializeForSet for resilience, even if
it is not the preferred method for inout accesses of the property
or subscript.
To avoid having SILGen behavior depend on whether Sema synthesized
a materializeForSet or not, add a more precise predicate. The
general idea as I understand it, is that we want to use
materializeForSet if we do not have perfect information about the
implementation of the property or subscript, due to polymorphism
or resilience.
We don't want to perform substitutions when we call the materializeForSet
accessor itself, since the return value is a polymorphic thin function,
and its calling convention is not compatible with a concretely-typed
function value in the case where 'Self' is an abstract type parameter.
With this change, the materializeForSet declaration still has an AST type
for the callback in its return value, but since this AST type makes no
sense in reality it would be better to just return a RawPointer instead,
removing some unnecessary code from CodeSynthesis.cpp. This will be
cleaned up in a subsequent patch.
We don't want to perform substitutions when we call the materializeForSet
accessor itself, since the return value is a polymorphic thin function,
and its calling convention is not compatible with a concretely-typed
function value in the case where 'Self' is an abstract type parameter.
With this change, the materializeForSet declaration still has an AST type
for the callback in its return value, but since this AST type makes no
sense in reality it would be better to just return a RawPointer instead,
removing some unnecessary code from CodeSynthesis.cpp. This will be
cleaned up in a subsequent patch.