If the derived class is final and the base class is not, the
protocol requirement can be witnessed by a non-required
initializer. Non-required initializers have initializing
but not allocating entry points in the vtable.
The fix here statically dispatches to the allocating
initializer instead. The test verifies that the allocating
entry point uses alloc_ref_dynamic, so you will get an
instance of the correct subclass.
This fix does not handle the resilient case where the
conformance is defined in a different module, and the original
module adds an override of the convenience init later.
I filed <rdar://problem/40639124> to track the resilient case.
Fixes <rdar://problem/40003840>.
closure lifetimes.
SILGen will now unconditionally emit
%cvt = convert_escape_to_noescape [guaranteed] %op
instructions. The mandatory ClosureLifetimeFixup pass ensures that %op's
lifetime spans %cvt's uses.
The code in DefiniteInitialization that handled a subset of cases is
removed.
To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
This method was not distinguishing in between in_guaranteed and in
parameters. This would cause the curry thunk where this is used to not copy
in_guaranteed parameters before passing in the parameter to the
partial_apply. This can not affect +1 code since the curry thunk will always
have self at +1.
I also refactored code in:
1. SILGenPoly.
2. SILGenProlog.
3. SILGenConstructor.
to use this function instead of their own reimplementations of the same thing.
This should be NFC for +1 code and is tested by test updates when +0 is enabled.
rdar://34222540
Check that an ``withoutActuallyEscaping(noescape_closure) { // scope}`` closure
has not escaped in the scope using the ``is_escaping_closure %closure``
instruction.
rdar://35525730
Otherwise, it looks like we are storing a non-trivial value (Any) to memory
without a +1 cleanup, violating invariants. The change itself is harmless since
destroying an Any containing only trivial things in the inline buffer is a
no-op.
This is the last change I need to enable the only +1 into memory assert.
rdar://34222540
Fixes an issue where it was possible for a +0 pointer from an argument to get to
this thunk transform code. This is significantly more likely to happen when all
arguments are at +0.
This is tested by a SILGen test that I updated out of tree. It shouldn't effect
normal +1 code.
rdar://34222540
There are a bunch of methods in this area that do not use ManagedValues, but
that should. This is another step towards unwinding the hairball.
rdar://34222540
- Emit a withoutActuallyEscapingClosure partial apply
This is to convert an @noescape closure to an escaping closure.
This needs to be done in preparation of @noescape closure contexts
becoming trivial.
- Insert escaping to noescape conversions
- Fix SILGen for @noescape
- Postpone closure cleanups to outside the argument scope
- Apply postponement recursively for closures passed to subscripts
- Only skip applying escapeness conversions for Swift thick functions
- Fix parameter convention for noescape closures in thunks
Part of:
SR-5441
rdar://36116691
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
We should only ever reach this point with an input type that is
optional and output type that is non-optional if in fact the input
type was originally declared as IUO. If we were to hit this point
today with a plain optional, we end up eventually hitting the
llvm_unreachable at the end of the function.
Fix collection subtyping relation in function argument position
by emiting special re-abstraction thunk with collection upcast.
Resolves: rdar://problem/35702810
I don't think there's a way to test this right now because we don't
actually support SwiftValue and so on except under ObjCInterop, but
it's certainly more future-proof.
at AnyObject?.
Also, ensure that @convention(block) functions can be erased to
AnyObject, and teach SILGen how to do this with unchecked_ref_cast.
Fixes a source compatibility suite regression.