The main changes are:
*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.
*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.
*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.
*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.
*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
In the C++ sources it is slightly more convenient to dump to stderr than
to print to stdout, but it is rather more unsightly to print to stderr
from the Swift sources. Switch to stdout. Also allows the dump
functions to be marked debug only.
Previously, to workaround an issue with ShrinkBorrowScope (where it
assumed a reasonable definition of isDeinitBarrier), a placeholder
version of the function was added. It is now removed by moving the
implementation of a version of that predicate back to C++.
Added new C++-to-Swift callback for isDeinitBarrier.
And pass it CalleeAnalysis so it can depend on function effects. For
now, the argument is ignored. And, all callers just pass nullptr.
Promoted to API the mayAccessPointer component predicate of
isDeinitBarrier which needs to remain in C++. That predicate will also
depends on function effects. For that reason, it too is now passed a
BasicCalleeAnalysis and is moved into SILOptimizer.
Also, added more conservative versions of isDeinitBarrier and
maySynchronize which will never consider side-effects.
* C++: add a function `getDestructors(SILType type, bool isExactType)’: if the type is a final class or `isExactType` is true, then return the one and only destructor of that class.
* swift: add `getDestructor(ofExactType type: Type)` and `getIncompleteCallees`
* swift: remove `getDestructor` from the PassContext. The API of the `calleeAnalysis` can be used instead.
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
If we know that we have a FunctionRefInst (and not another variant of FunctionRefBaseInst), we know that getting the referenced function will not be null (in contrast to FunctionRefBaseInst::getReferencedFunctionOrNull).
NFC
We were not using the primary benefits of an intrusive list, namely the
ability to insert or remove from the middle of the list, so let's switch
to a plain vector. This also avoids linked-list pointer chasing.
In such a case the overridden function gets a new separate vtable entry.
With this change, the computation of class method callees only uses the information in sil_vtables (instead of ClassDecl members).
Fixes a compiler crash in various optimization passes.
rdar://problem/56146633
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
Although I think it is a NFC, it makes it more safe. This change is to align the fix with what I did on the 4.1 branch.
Also remove the not needed $ chars in the function names in the test case.
The behavior of functions in other libraries may change in past/future versions of the library. So the compiler should not make any assumptions about them.
rdar://problem/32275048
Compute the callees of the witness thunks in a witness table more
accurately. Patch from rdar://problem/23382111, originally written by
Mark Lacey a while back, polished up/tested by me.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.