So far, constant propagated arguments could only be builtin literals.
Now we support arbitrary structs (with constant arguments), e.g. `Int`.
This requires a small addition in the mangling scheme for function specializations.
Also, the de-mangling tree now looks a bit different to support a "tree" of structs and literals.
Bail if the closure captures an ObjectiveC block which might _not_ be copied onto the heap, i.e optimized by SimplifyCopyBlock.
We can't do this because the optimization inserts retains+releases for captured arguments.
That's not possible for stack-allocated blocks.
Fixes a mis-compile
rdar://154241245
Create two versions of the following functions:
isConsumedParameter
isGuaranteedParameter
SILParameterInfo::isConsumed
SILParameterInfo::isGuaranteed
SILArgumentConvention::isOwnedConvention
SILArgumentConvention::isGuaranteedConvention
These changes will be needed when we add a new convention for
non-trivial C++ types as the functions will return different answers
depending on whether they are called for the caller or the callee. This
commit doesn't change any functionality.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
inlining, generic/closure specialization, and devirtualization optimization passes.
SILFunction::canBeInlinedIntoCaller now exlicitly requires a caller's SerializedKind_t arg.
isAnySerialized() is added as a convenience function that checks if [serialized] or [serialized_for_pkg].
Resolves rdar://128704752
[serialized_for_package] if Package CMO is enabled. The latter kind
allows a function to be serialized even if it contains loadable types,
if Package CMO is enabled. Renamed IsSerialized_t as SerializedKind_t.
The tri-state serialization kind requires validating inlinability
depending on the serialization kinds of callee vs caller; e.g. if the
callee is [serialized_for_package], the caller must be _not_ [serialized].
Renamed `hasValidLinkageForFragileInline` as `canBeInlinedIntoCaller`
that takes in its caller's SerializedKind as an argument. Another argument
`assumeFragileCaller` is also added to ensure that the calle sites of
this function know the caller is serialized unless it's called for SIL
inlining optimization passes.
The [serialized_for_package] attribute is allowed for SIL function, global var,
v-table, and witness-table.
Resolves rdar://128406520
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
When a specialization is created, in the original function, releases are
added in two different places:
(1) `ClosureSpecCloner::populateCloned`
(2) `rewriteApplyInst`
In the former, releases are added for closures which are guaranteed or
trivial noescape (but with owned convention).
In the latter, releases are added for closures that are owned.
Previously, when emitting releases at (2), whether the closure was
trivial noescape wasn't considered. The result was inserting the
releases twice, an overrelease.
Here, fix (2) to recognize trivial noescape as not +1.
rdar://110115795
When a specialization is created, in the original function, releases are
added in two different places:
(1) `ClosureSpecCloner::populateCloned`
(2) `rewriteApplyInst`
In the former, releases are added for closures which are guaranteed or
trivial noescape (but with owned convention).
In the latter, releases are added for closures that are owned.
Previously, when emitting releases at (2), whether the closure was
trivial noescape wasn't considered. The result was inserting the
releases twice, an overrelease.
Here, fix (2) to recognize trivial noescape as not +1.
rdar://110058964
For now, disable specialization when it would result in adding
releases to readnone, readonly, or releasenone functions.
Fixes rdar://105887096
TODO: A @noescape closure should never be converted to an @owned
argument regardless of the function attribute.
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
This attribute indicates that the given SILFunction has to be
added to "accessible functions" section and could be looked up
at runtime using a special API.
I am adding this to make it easy to determine if a SILFunction that is not inout
aliasable is captured. This is useful when emitting certain types of
diagnostics like I need to emit with move only.
Fixes getSpecializationLevelRecursive to handle recursive manglings caused by interleaving CapturePropagation and ClosureSpecialize passes.
For some reason, only the first closure parameter was checked for recursion. We need to handle patterns like this:
kind=FunctionSignatureSpecialization
kind=SpecializationPassID, index=3
kind=FunctionSignatureSpecializationParam
kind=FunctionSignatureSpecializationParam
kind=FunctionSignatureSpecializationParamKind, index=0
kind=FunctionSignatureSpecializationParamPayload, text="$s4test10ExpressionO8contains5whereS3bXE_tFSbACXEfU_S2bXEfU_36$s4test12IndirectEnumVACycfcS2bXEfU_Tf3npf_n"
I fixed the logic so we now check for recursion on all closure parameters and bail out on unrecognized mangling formats.
For reference, see summary.sil in
Infinitely recursive closure specialization #61955https://github.com/apple/swift/issues/61955
Fixes rdar://101589190 (Swift Compiler hangs when building this code for release)
This invalidation kind is used when a compute-effects pass changes function effects.
Also, let optimization passes which don't change effects only invalidate the `FunctionBody` and not `Everything`.
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
Avoid an infinite specialization loop caused by repeated runs of the ClosureSpecializer and CapturePropagation.
CapturePropagation propagates constant function-literals.
Such function specializations can then be optimized again by the ClosureSpecializer and so on.
This happens if a closure argument is called _and_ referenced in another closure, which is passed to a recursive call. E.g.
func foo(_ c: @escaping () -> ()) {
c()
foo({ c() })
}
rdar://80752327
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
If we know that we have a FunctionRefInst (and not another variant of FunctionRefBaseInst), we know that getting the referenced function will not be null (in contrast to FunctionRefBaseInst::getReferencedFunctionOrNull).
NFC
This became necessary after recent function type changes that keep
substituted generic function types abstract even after substitution to
correctly handle automatic opaque result type substitution.
Instead of performing the opaque result type substitution as part of
substituting the generic args the underlying type will now be reified as
part of looking at the parameter/return types which happens as part of
the function convention apis.
rdar://62560867
In order to allow this, I've had to rework the syntax of substituted function types; what was previously spelled `<T> in () -> T for <X>` is now spelled `@substituted <T> () -> T for <X>`. I think this is a nice improvement for readability, but it did require me to churn a lot of test cases.
Distinguishing the substitutions has two chief advantages over the existing representation. First, the semantics seem quite a bit clearer at use points; the `implicit` bit was very subtle and not always obvious how to use. More importantly, it allows the expression of generic function types that must satisfy a particular generic abstraction pattern, which was otherwise impossible to express.
As an example of the latter, consider the following protocol conformance:
```
protocol P { func foo() }
struct A<T> : P { func foo() {} }
```
The lowered signature of `P.foo` is `<Self: P> (@in_guaranteed Self) -> ()`. Without this change, the lowered signature of `A.foo`'s witness would be `<T> (@in_guaranteed A<T>) -> ()`, which does not preserve information about the conformance substitution in any useful way. With this change, the lowered signature of this witness could be `<T> @substituted <Self: P> (@in_guaranteed Self) -> () for <A<T>>`, which nicely preserves the exact substitutions which relate the witness to the requirement.
When we adopt this, it will both obviate the need for the special witness-table conformance field in SILFunctionType and make it far simpler for the SILOptimizer to devirtualize witness methods. This patch does not actually take that step, however; it merely makes it possible to do so.
As another piece of unfinished business, while `SILFunctionType::substGenericArgs()` conceptually ought to simply set the given substitutions as the invocation substitutions, that would disturb a number of places that expect that method to produce an unsubstituted type. This patch only set invocation arguments when the generic type is a substituted type, which we currently never produce in type-lowering.
My plan is to start by producing substituted function types for accessors. Accessors are an important case because the coroutine continuation function is essentially an implicit component of the function type which the current substitution rules simply erase the intended abstraction of. They're also used in narrower ways that should exercise less of the optimizer.
Changes:
* Allow optimizing partial_apply capturing opened existential: we didn't do this originally because it was complicated to insert the required alloc/dealloc_stack instructions at the right places. Now we have the StackNesting utility, which makes this easier.
* Support indirect-in parameters. Not super important, but why not? It's also easy to do with the StackNesting utility.
* Share code between dead closure elimination and the apply(partial_apply) optimization. It's a bit of refactoring and allowed to eliminate some code which is not used anymore.
* Fix an ownership problem: We inserted copies of partial_apply arguments _after_ the partial_apply (which consumes the arguments).
* When replacing an apply(partial_apply) -> apply and the partial_apply becomes dead, avoid inserting copies of the arguments twice.
These changes don't have any immediate effect on our current benchmarks, but will allow eliminating curry thunks for existentials.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
Add `llvm_unreachable` to mark covered switches which MSVC does not
analyze correctly and believes that there exists a path through the
function without a return value.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798