In order for availability checks in iOS apps to be evaluated correctly when
running on macOS, the application binary must call a copy of
`_stdlib_isOSVersionAtLeast_AEIC()` that was emitted into the app, instead of
calling the `_stdlib_isOSVersionAtLeast()` function provided by the standard
library. This is because the call to the underlying compiler-rt function
`__isPlatformVersionAtLeast()` must be given the correct platform identifier
argument; if the call is not emitted into the client, then the macOS platform
identifier is used and the iOS version number will be mistakenly interpreted as
a macOS version number at runtime.
The `_stdlib_isOSVersionAtLeast()` function in the standard library is marked
`@_transparent` on iOS so that its call to `_stdlib_isOSVersionAtLeast_AEIC()`
is always inlined into the client. This works for the code generated by normal
`if #available` checks, but for the `@backDeployed` function thunks, the calls
to `_stdlib_isOSVersionAtLeast()` were not being inlined and that was causing
calls to `@backDeployed` functions to crash in iOS apps running on macOS since
their availability checks were being misevaluated.
The SIL optimizer has a heuristic which inhibits mandatory inlining in
functions that are classified as thunks, in order to save code size. This
heuristic needs to be relaxed in `@backDeployed` thunks, so that mandatory
inlining of `_stdlib_isOSVersionAtLeast()` can behave as expected. The change
should be safe since the only `@_transparent` function a `@backDeployed` thunk
is ever expected to call is `_stdlib_isOSVersionAtLeast()`.
Resolves rdar://134793410.
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
inlining, generic/closure specialization, and devirtualization optimization passes.
SILFunction::canBeInlinedIntoCaller now exlicitly requires a caller's SerializedKind_t arg.
isAnySerialized() is added as a convenience function that checks if [serialized] or [serialized_for_pkg].
Resolves rdar://128704752
[serialized_for_package] if Package CMO is enabled. The latter kind
allows a function to be serialized even if it contains loadable types,
if Package CMO is enabled. Renamed IsSerialized_t as SerializedKind_t.
The tri-state serialization kind requires validating inlinability
depending on the serialization kinds of callee vs caller; e.g. if the
callee is [serialized_for_package], the caller must be _not_ [serialized].
Renamed `hasValidLinkageForFragileInline` as `canBeInlinedIntoCaller`
that takes in its caller's SerializedKind as an argument. Another argument
`assumeFragileCaller` is also added to ensure that the calle sites of
this function know the caller is serialized unless it's called for SIL
inlining optimization passes.
The [serialized_for_package] attribute is allowed for SIL function, global var,
v-table, and witness-table.
Resolves rdar://128406520
Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
KeyPath's getter/setter/hash/equals functions have their own calling
convention, which receives generic arguments and embedded indices from a
given KeyPath argument buffer.
The convention was previously implemented by:
1. Accepting an argument buffer as an UnsafeRawPointer and casting it to
indices tuple pointer in SIL.
2. Bind generic arguments info from the given argument buffer while emitting
prologue in IRGen by creating a new forwarding thunk.
This 2-phase lowering approach was not ideal, as it blocked KeyPath
projection optimization [^1], and also required having a target arch
specific signature lowering logic in SIL-level [^2].
This patch centralizes the KeyPath accessor calling convention logic to
IRGen, by introducing `@convention(keypath_accessor_XXX)` convention in
SIL and lowering it in IRGen. This change unblocks the KeyPath projection
optimization while capturing subscript indices, and also makes it easier
to support WebAssembly target.
[^1]: https://github.com/apple/swift/pull/28799
[^2]: https://forums.swift.org/t/wasm-support/16087/21
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Now that in OSSA `partial_apply [on_stack]`s are represented as owned
values rather than stack locations, it is possible for their destroys to
violate stack discipline. A direct lowering of the instructions to
non-OSSA would violate stack nesting.
Previously, when inlining, it was assumed that non-coroutine callees
maintained stack discipline. And, when inlining an OSSA function into a
non-OSSA function, OSSA instructions were lowered directly. The result
was that stack discipline could be violated.
Here, when inlining a function in OSSA form into a function lowered out
of OSSA form, stack nesting is fixed up.
Previously, there was an -Xllvm option to verify after all inlining to a
particlar caller. That makes it a chore to track down which apply's
inlining resulted in invalid code. Here, a new option is added that
verifies after each run of the inliner.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
This invalidation kind is used when a compute-effects pass changes function effects.
Also, let optimization passes which don't change effects only invalidate the `FunctionBody` and not `Everything`.
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
Fix innumerable latent bugs with iterator invalidation and callback invocation.
Removes dead code earlier and chips away at all the redundant copies the compiler generates.
It's not needed anymore with delayed instruction deletion.
It was used for two purposes:
1. For analysis, which cache instructions, to avoid dangling instruction pointers
2. For passes, which maintain worklists of instructions, to remove a deleted instructions from the worklist. This is now done by checking SILInstruction::isDeleted().
Instead, put the archetype->instrution map into SIlModule.
SILOpenedArchetypesTracker tried to maintain and reconstruct the mapping locally, e.g. during a use of SILBuilder.
Having a "global" map in SILModule makes the whole logic _much_ simpler.
I'm wondering why we didn't do this in the first place.
This requires that opened archetypes must be unique in a module - which makes sense. This was the case anyway, except for keypath accessors (which I fixed in the previous commit) and in some sil test files.
If we know that we have a FunctionRefInst (and not another variant of FunctionRefBaseInst), we know that getting the referenced function will not be null (in contrast to FunctionRefBaseInst::getReferencedFunctionOrNull).
NFC
In recordDeadFunction, we look at operands of an instruction to be deleted,
and add back the defining instruction of the operands to the worklist.
This works in general when we are deleting dead instructions
recursively.
But we also consider, an instruction with only debug uses as dead. So
when we are deleting a debug instruction, we may have already deleted
its operand's defining instruction. So it would be incorrect to add it
to the worklist.
... and use that API in FullApplySite::insertAfterInvocation.
Also change FullApplySite::insertAfterInvocation/insertAfterFullEvaluation to directly pass a SILBuilder instead of just an insertion point to the callback.
This makes more sense (given the function names) and simplifies the usages.
It's a NFC.
Because partial_apply consumes it's arguments we need to copy them. This was done for "direct" parameters but not for address parameters.
rdar://problem/64035105
HOW THIS WAS DONE: I did this by refactoring the last usages of checkValue into
a higher level API that uses checkValue as an implementation detail:
completeConsumingUseSet(...). All of these places in
MandatoryInlining/PredictableMemOpts all wanted behavior where we complete a set
of consuming uses for a value, detecting if the consuming use is in a different
loop nest from the value.
WHY DO THIS: The reason why I wanted to do this is that checkValue is a lower
level API that drives the actual low level computation. We shouldn't expose its
interface to the LinearLifetimeChecker's users since it is our own private
implementation detail that also has some sharp edges.
AN ADDITIONAL BENEFIT: Additionally by hiding the declaration of checkValue, the
last public use of LinearLifetimeError and ErrorBehaviorKind was not
private. This allowed me to then move the declarations of those two to a private
header (./lib/SIL/LinearLifetimeCheckerPrivate.h) and make their declarations
private to LinearLifetimeChecker as well. As such, I renamed them to
LinearLifetimeChecker::Error and LinearLifetimeChecker::ErrorBehaviorKind.
Devirtualizing try_apply modified the CFG, but passes that run
devirtualization were not invalidating any CFG analyses, such as the
domtree.
This could hypothetically have caused miscompilation, but will be
caught by running with -sil-verify-all.
This is just better information to have since one wants to not only know the
instruction, but also the specific value used on the instruction since behavior
can vary depending upon that. The operand is what ties the two together so it is
a natural fit.
Now that this is done, I am going to work on refactoring out converting a
LiveRange from @owned -> @guaranteed. It will be a consuming operation using a
move operator since once the transformation has completed, the LiveRange no
longer exists.
I need this refactored functionality since I am going to need it when
eliminating phi-webs.
The only reason why BranchPropagatedUser existed was because early on in SIL, we
weren't sure if cond_br should be able to handle non-trivial values in
ossa. Now, we have reached the point where we have enough experience to make the
judgement that it is not worth having in the representation due to it not
holding its weight.
Now that in ToT we have banned cond_br from having non-trivial operands in ossa,
I can just eliminate BranchPropagatedUser and replace it with the operands that
we used to construct them!
A few notes:
1. Part of my motiviation in doing this is that I want to change LiveRange to
store operands instead of instructions. This is because we are interested in
being able to understand the LiveRange at a use granularity in cases where we
have multiple operands. While doing this, I discovered that I needed
SILInstructions to use the Linear Lifetime Checker. Then I realized that now was
the time to just unwind BranchPropagatedUser.
2. In certain places in SemanticARCOpts, I had to do add some extra copies to
transform arrays of instructions from LiveRange into their operand form. I am
going to remove them in a subsequent commit when I change LiveRange to work on
operands. I am doing this split to be incremental.
3. I changed isSingleInitAllocStack to have an out array of Operand *. The only
user of this code is today in SemanticARCOpts and this information is fed to the
Linear Lifetime Checker, so I needed to do it.
OwnershipUtils.h is growing a bit and I want to use it to store abstract higher
level utilities for working with ossa. LinearLifetimeChecker is just a low level
detail of that, so it makes sense to move it out now.
Changes:
* Allow optimizing partial_apply capturing opened existential: we didn't do this originally because it was complicated to insert the required alloc/dealloc_stack instructions at the right places. Now we have the StackNesting utility, which makes this easier.
* Support indirect-in parameters. Not super important, but why not? It's also easy to do with the StackNesting utility.
* Share code between dead closure elimination and the apply(partial_apply) optimization. It's a bit of refactoring and allowed to eliminate some code which is not used anymore.
* Fix an ownership problem: We inserted copies of partial_apply arguments _after_ the partial_apply (which consumes the arguments).
* When replacing an apply(partial_apply) -> apply and the partial_apply becomes dead, avoid inserting copies of the arguments twice.
These changes don't have any immediate effect on our current benchmarks, but will allow eliminating curry thunks for existentials.