If an apply uses an existential archetype (`@opened("...")`) and the concrete type is known, replace the existential archetype with the concrete type
1. in the apply's substitution map
2. in the arguments, e.g. by inserting address casts
For example:
```
%5 = apply %1<@opend("...")>(%2) : <τ_0_0> (τ_0_0) -> ()
```
->
```
%4 = unchecked_addr_cast %2 to $*ConcreteType
%5 = apply %1<ConcreteType>(%4) : <τ_0_0> (τ_0_0) -> ()
```
At one point, OpenedArchetypeType did not exist as a separate subclass
of ArchetypeType, so this method did something. Now, it's just
equivalent to calling is<> or isa<>.
I also removed a couple of asserts that were obvious no-ops as a result.
The operands to the original apply are cast via an ownership forwarding
instruction to the appropriate type for the rewritten apply.
```
%converted = convert_function %original to $(NewTy) -> ()
apply %converted(%operand)
```
->
```
%cast = cast %operand to $OriginalTy
apply %original(%cast)
```
Previously, when an original operand is owned but the new apply does not
consume that operand, the newly added cast would consume the original
operand (an owned value)--something the original code being replaced did
not do.
```
%converted = convert_function %original to $(NewTy) -> ()
apply %converted(%operand : @guaranteed)
// %operand remains available
```
->
```
%cast = cast %operand to $OriginalTy // consumes %operand!
apply %original(%cast : @guaranteed)
// %operand is not available!
```
This is incorrect for the complementary reasons that the result of the
cast is leaked and any uses of the original operand subsequent to the
new apply are uses-after-consume.
Here, this is fixed by borrowing the original operand before casting in
this case.
rdar://142570727
Don't use previously found owned concrete values in ossa. They will consumed by
forwarding operations like init_existential_ref. Instead create an unconditional cast
of the opened existential to concrete type and use that to create a concrete apply.
In Embedded Swift, witness method lookup is done from specialized witness tables.
For this to work, the type of witness_method must be specialized as well.
Otherwise the method call would be done with wrong parameter conventions (indirect instead of direct).
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Create two versions of the following functions:
isConsumedParameter
isGuaranteedParameter
SILParameterInfo::isConsumed
SILParameterInfo::isGuaranteed
SILArgumentConvention::isOwnedConvention
SILArgumentConvention::isGuaranteedConvention
These changes will be needed when we add a new convention for
non-trivial C++ types as the functions will return different answers
depending on whether they are called for the caller or the callee. This
commit doesn't change any functionality.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
This fixes a crash at runtime when destroying a Swift array of values of a C++ foreign reference type.
Swift optimizes the amount of metadata emitted for `_ContiguousArrayStorage<Element>` by reusing `_ContiguousArrayStorage<AnyObject>` whenever possible (see `getContiguousArrayStorageType`). However, C++ foreign reference types are not `AnyObject`s, since they have custom retain/release operations.
This change disables the `_ContiguousArrayStorage` metadata optimization for C++ reference types, which makes sure that `swift_arrayDestroy` will call the correct release operation for elements of `[MyCxxRefType]`.
rdar://127154770
Previously, only the indirect results and the parameters were handled.
However, the indirect error doesn't show up in the list of indirect
results (or in the list of parameters). But it sure does show up in the
list of arguments. Here, that argument too is handled.
rdar://127452206
Enable KeyPath/AnyKeyPath/PartialKeyPath/WritableKeyPath in Embedded Swift, but
for compile-time use only:
- Add keypath optimizations into the mandatory optimizations pipeline
- Allow keypath optimizations to look through begin_borrow, to make them work
even in OSSA.
- If a use of a KeyPath doesn't optimize away, diagnose in PerformanceDiagnostics
- Make UnsafePointer.pointer(to:) transparent to allow the keypath optimization
to happen in the callers of UnsafePointer.pointer(to:).
KeyPathProjector creates alloc_stack and dealloc_stack for temporaries.
Insertion of new dealloc_stack can modify stack discipline.
Invalidate stack nesting so that it can be fixed up in the pass.
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This patch replaces the stateful generation of SILScope information in
SILGenFunction with data derived from the ASTScope hierarchy, which should be
100% in sync with the scopes needed for local variables. The goal is to
eliminate the surprising effects that the stack of cleanup operations can have
on the current state of SILBuilder leading to a fully deterministic (in the
sense of: predictible by a human) association of SILDebugScopes with
SILInstructions. The patch also eliminates the need to many workarounds. There
are still some accomodations for several Sema transformation passes such as
ResultBuilders, which don't correctly update the source locations when moving
around nodes. If these were implemented as macros, this problem would disappear.
This necessary rewrite of the macro scope handling included in this patch also
adds proper support nested macro expansions.
This fixes
rdar://88274783
and either fixes or at least partially addresses the following:
rdar://89252827
rdar://105186946
rdar://105757810
rdar://105997826
rdar://105102288
This fixes a bad optimization deficiency for dictionary subscript lookups with default values: there shouldn't be a closure context allocated.
rdar://106423763
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
to SILBuilder::createUncheckedForwardingCast
It would be disastrous to confuse this utility with a bit cast. A bit
cast always produces an Unowned value which must immediately be copied
to be used. This utility always forwards ownership. It cannot be used
to truncate values.
Also, be careful not to convert "reinterpret cast"
(e.g. Builtin.reinterpretCast) into a "value cast" since ownership
will be incorrect and the reinterpreted types might not have
equivalent layout.
If a `convert_function` instruction operates on a function with indirect
results, or changes the type of direct results, then we can transform
an application of the converted function into an application of the
original function followed by bitwise conversions of the results, just
like we have done for arguments. Now that closures are emitted at their
context abstraction level, they are more likely to be emitted with
indirect results, so the inability to simplify function conversions
in this case would lead to missed inlining opportunities we used to
take.
This optimization rewrites only the 'self' argument, and does not know how to
substitute types in the users of the given apply instruction in case the
underlying protocol method returns a `Self`-dependent type. With SE-0309 in
motion, the bail-out logic must be generalized to `Self`-rooted type parameters.