Eventually, querying the `AvailabilityDomain` associated with an
`AvailabilitySpec` will require invoking a request that takes a `DeclContext`.
This means that any diagnostics related to the domain identified by an
`AvailabilitySpec` need to be emitted during type-checking rather than parsing.
This change migrates several `AvailabilitySpec` diagnostics from Parse to Sema
to unblock further work.
We previously missed diagnosing this for macro
args, fixing it turned out to be a bit more source
breaking than initially thought though, so downgrade
to a warning until Swift 7.
rdar://141963700
When iterator consists of tuple of variable and iteration only mutates
the tuple partially, improve the warning message from "changing to 'let"
to "changing the pattern to '(..., case let, ...)"
Previously we would check if we have a SwitchStmt,
and apply diagnostics such as `checkExistentialTypes`
to the CaseStmts individually. This however would
have been missed for `catch` statements. The change
to consistently call `performStmtDiagnostics` in
closures fixed this for `do-catch`'s in closures,
this commit fixes it for those outside of closures.
Because this is source breaking, the existential
diagnostic is downgraded to a warning until Swift
7 for catch statements specifically.
While here, also apply the ambiguous where clause
diagnostic to `catch` statements.
Really this applies to any capture, not just
`self`. Also refactor to make it clear that
parent closures and functions are really the only
cases that matter here.
Opaque type metadata accessor functions could be miscompiled for functions that
contain `if #available` checks for inactive platforms. For example, this
function will always return `A` when compiled for macOS, but the opaque type
accessor would instead return the type metadata for `B`:
```
func f() -> some P {
if #available(iOS 99, *) {
return A() // Returns an A on macOS
} else {
return B()
}
}
```
Resolves rdar://139487970.
It doesn't make sense to use `VersionRange::empty()` to represent "universally
available" since something that is available in an empty version range is
effectively never available.
When a protocol which has a read (or modify) requirement is built with
the CoroutineAccessors feature, it gains a read2 (or modify2,
respectively) requirement. For this to be compatible with binaries
built without the feature, a default implementation for these new
requirements must be provided. Cause these new accessor requirements to
have default implementations by returning `true` from
`doesAccessorHaveBody` when the context is a `ProtocolDecl` and the
relevant availability check passes.
C++ swift::Parser is going to be replaced with SwiftParser+ASTGen.
Direct dependencies to it should be removed. Before that, remove
unnecessary '#include "swift/Parse/Parser.h"' to clarify what actually
depends on 'swift::Parser'.
Split 'swift::parseDeclName()' et al. into the dedicated files.
Today ParenType is used:
1. As the type of ParenExpr
2. As the payload type of an unlabeled single
associated value enum case (and the type of
ParenPattern).
3. As the type for an `(X)` TypeRepr
For 1, this leads to some odd behavior, e.g the
type of `(5.0 * 5).squareRoot()` is `(Double)`. For
2, we should be checking the arity of the enum case
constructor parameters and the presence of
ParenPattern respectively. Eventually we ought to
consider replacing Paren/TuplePattern with a
PatternList node, similar to ArgumentList.
3 is one case where it could be argued that there's
some utility in preserving the sugar of the type
that the user wrote. However it's really not clear
to me that this is particularly desirable since a
bunch of diagnostic logic is already stripping
ParenTypes. In cases where we care about how the
type was written in source, we really ought to be
consulting the TypeRepr.
Since this function is being called from the constraint solver now, we
need to generalize the way it obtains the Type of an Expression, as the
expression itself may not know its own type, only the solver does.
resolves rdar://134371893 / https://github.com/swiftlang/swift/issues/75999
Previously, the constraint solver would first attempt member lookup that
excluded members from transitively imported modules. If there were no viable
candidates, it would perform a second lookup that included the previously
excluded members, treating any candidates as unviable. This meant that if the
member reference did resolve to one of the unviable candidates the resulting
AST would be broken, which could cause unwanted knock-on diagnostics.
Now, members from transitively imported modules are always returned in the set
of viable candidates. However, scoring will always prioritize candidates from
directly imported modules over members from transitive imports. This solves the
ambiguities that `MemberImportVisibility` is designed to prevent. If the only
viable candidates are from transitively imported modules, though, then the
reference will be resolved successfully and diagnosed later in
`MiscDiagnostics.cpp`. The resulting AST will not contain any errors, which
ensures that necessary access levels can be computed correctly for the imports
suggested by `MemberImportVisibility` fix-its.
Resolves rdar://126637855.
Rather than walking into the inactive regions of IfConfigDecls looking for
references to a declaration before we diagnose it, go to the syntax
tree and look through inactive *and unparsed* regions for identifier
tokens that match. If we find one, suppress the diagnostic.
This reduces our dependency on IfConfigDecl in the AST, and also makes
the same suppression work with code in unparsed regions that had no
representation in IfConfigDecl.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes