This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
This instruction creates a "virtual" address to represent a property with a behavior that supports definite initialization. The instruction holds references to functions that perform the initialization and 'set' logic for the property. It will be DI's job to rewrite assignments into this virtual address into calls to the initializer or setter based on the initialization state of the property at the time of assignment.
These APIs are useful e.g. for quickly finding pre-specialisations by their names.
The existence check is very light-weight and does not try to deserialize bodies of SIL functions.
This ireapplies commit 255c52de9f.
Original commit message:
Serialize debug scope and location info in the SIL assembler language.
At the moment it is only possible to test the effects that SIL
optimization passes have on debug information by observing the
effects of a full .swift -> LLVM IR compilation. This change enable us
to write targeted testcases for single SIL optimization passes.
The new syntax is as follows:
sil-scope-ref ::= 'scope' [0-9]+
sil-scope ::= 'sil_scope' [0-9]+ '{'
sil-loc
'parent' scope-parent
('inlined_at' sil-scope-ref )?
'}'
scope-parent ::= sil-function-name ':' sil-type
scope-parent ::= sil-scope-ref
sil-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
Each instruction may have a debug location and a SIL scope reference
at the end. Debug locations consist of a filename, a line number, and
a column number. If the debug location is omitted, it defaults to the
location in the SIL source file. SIL scopes describe the position
inside the lexical scope structure that the Swift expression a SIL
instruction was generated from had originally. SIL scopes also hold
inlining information.
<rdar://problem/22706994>
At the moment it is only possible to test the effects that SIL
optimization passes have on debug information by observing the
effects of a full .swift -> LLVM IR compilation. This change enable us
to write targeted testcases for single SIL optimization passes.
The new syntax is as follows:
sil-scope-ref ::= 'scope' [0-9]+
sil-scope ::= 'sil_scope' [0-9]+ '{'
sil-loc
'parent' scope-parent
('inlined_at' sil-scope-ref )?
'}'
scope-parent ::= sil-function-name ':' sil-type
scope-parent ::= sil-scope-ref
sil-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
Each instruction may have a debug location and a SIL scope reference
at the end. Debug locations consist of a filename, a line number, and
a column number. If the debug location is omitted, it defaults to the
location in the SIL source file. SIL scopes describe the position
inside the lexical scope structure that the Swift expression a SIL
instruction was generated from had originally. SIL scopes also hold
inlining information.
<rdar://problem/22706994>
Fix some interface type/context type confusion in the AST synthesis from the previous patch, add a unique private mangling for behavior protocol conformances, and set up SILGen to emit the conformances when property declarations with behaviors are visited. Disable synthesis of the struct memberwise initializer if any instance properties use behaviors; codegen will need to be redesigned here.
The overhead of uniquing the locations in a Densemap isn't worth any of
the potential memory savings: While this adds an extra pointer and
unsigned to each SILInstruction, any extra memory is completely lost in
the noise (measured on a release -emit-ir build of the x86_64 stdlib).
This is not too surpising as the ratio between SILInstructions and unique
SILLocations is not very high and the DenseMap also needs space.
<rdar://problem/22706994>
remove the mixed concept that was SILFileLocation.
Also add support for a third type of underlying storage that will be used
for deserialized debug lcoations from textual SIL.
NFC
<rdar://problem/22706994>
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
The two types are nearly identical, and Fixnum is only in the Swift branches of LLVM,
not in mainline LLVM.
I do want to add ++ to PointerEmbeddedInt and fix some of this ugliness, but that'll
have to go through LLVM review, so it might take a bit.
As part of SE-0022, introduce an 'objc_selector' encoding for string
literals that places the UTF-8 string literal into the appropriate
segment for uniquing of Objective-C selector names.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
This is something that we have wanted for a long time and will enable us to
remove some hacks from the compiler (i.e. how we determine in the ARC optimizer
that we have "fatalError" like function) and also express new things like
"noarc".
There's a buggy SIL verifier check that was previously tautological,
and it turns out that it's violated, apparently harmlessly. Since it
was already doing nothing, I've commented it out temporarily while
I figure out the right way to fix SILGen to get the invariant right.
This centralizes the entrypoints for creating SILFunctions. Creating a
SILFunction is intimately tied to a specific SILModule, so it makes sense to
either centralize the creation on SILModule or SILFunction. Since a SILFunction
is in a SILModule, it seems more natural to put it on SILModule.
I purposely created a new override on SILMod that exactly matches the signature
of SILFunction::create so that beyond the extra indirection through SILMod, this
change should be NFC. We can refactor individual cases in later iterations of
refactoring.
The drivers for this change are providing a simpler API to SIL pass
authors, having a more efficient of the in-memory representation,
and ruling out an entire class of common bugs that usually result
in hard-to-debug backend crashes.
Summary
-------
SILInstruction
Old New
+---------------+ +------------------+ +-----------------+
|SILInstruction | |SILInstruction | |SILDebugLocation |
+---------------+ +------------------+ +-----------------+
| ... | | ... | | ... |
|SILLocation | |SILDebugLocation *| -> |SILLocation |
|SILDebugScope *| +------------------+ |SILDebugScope * |
+---------------+ +-----------------+
We’re introducing a new class SILDebugLocation which represents the
combination of a SILLocation and a SILDebugScope.
Instead of storing an inline SILLocation and a SILDebugScope pointer,
SILInstruction now only has one SILDebugLocation pointer. The APIs of
SILBuilder and SILDebugLocation guarantees that every SILInstruction
has a nonempty SILDebugScope.
Developer-visible changes include:
SILBuilder
----------
In the old design SILBuilder populated the InsertedInstrs list to
allow setting the debug scopes of all built instructions in bulk
at the very end (as the responsibility of the user). In the new design,
SILBuilder now carries a "current debug scope" state and immediately
sets the debug scope when an instruction is inserted.
This fixes a use-after-free issue with with SIL passes that delete
instructions before destroying the SILBuilder that created them.
Because of this, SILBuilderWithScopes no longer needs to be a template,
which simplifies its call sites.
SILInstruction
--------------
It is neither possible or necessary to manually call setDebugScope()
on a SILInstruction any more. The function still exists as a private
method, but is only used when splicing instructions from one function
to another.
Efficiency
----------
In addition to dropping 20 bytes from each SILInstruction,
SILDebugLocations are now allocated in the SILModule's bump pointer
allocator and are uniqued by SILBuilder. Unfortunately repeat compiles
of the standard library already vary by about 5% so I couldn’t yet
produce reliable numbers for how much this saves overall.
rdar://problem/22017421
If the compiler can prove that a throwing function actually does not throw it can
replace a try_apply with an "apply [nothrow]". Such an apply_inst calls a function
with an error result but does not have the overhead of checking for the error case.
Currently this flag is not set, yet.
Swift SVN r31151
dealloc_ref [destructor] is the existing behavior. It expects the
reference count to have reached zero and the isDeallocating bit to
be set.
The new [constructor] variant first drops the initial strong
reference.
This allows DI to properly free uninitialized instances in
constructors. Previously this would fail with an assertion if the
runtime was built with debugging enabled.
Progress on <rdar://problem/21991742>.
Swift SVN r31142
This feature is required for the implementation of pre-specialization, because one needs to check if a specialized SIL function with a given name exists in the standard library.
Swift SVN r30307
This flag is required for performing the propagation of global and static "let" values into their uses.
Let variables have now a [let] attribute in the SIL textual form.
Swift SVN r30153
We need a SIL level unsafe cast that supports arbitrary usage of
UnsafePointer, generalizes Builtin.reinterpretCast, and has the same
semantics on generic vs. nongeneric code. In other words, we need to
be able to promote the cast of an address type to the cast of an
object type without changing semantics, and that cast needs to support
types that are not layout identical.
This patch introduces an unchecked_bitwise_cast instruction for that
purpose. It is different from unsafe_addr_cast, which has been our
fall-back "unknown" cast in the past. With unchecked_bitwise_cast we
cannot assume layout or RC identity. The cast implies a store and
reload of the value to obtain the low order bytes. I know that
bit_cast is just an abbreviation for bitwise_cast, but we use
"bitcast" throught to imply copying a same sized value. No one could
come up with a better name for copying an objects low bytes via:
@addr = alloca $wideTy
store @addr, $wideTy
load @addr, $narrowTy
Followup patches will optimize unchecked_bitwise_cast into more
semantically useful unchecked casts when enough type information is
present. This way, the optimizer will rarely need to be taught about
the bitwise case.
Swift SVN r29510
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29490