package-wide resilience domain if Package CMO is enabled.
The purpose of the attribute includes:
- Indicates that certain types such as loadable types are
allowed in serialized functions in resiliently built module
if the optimization is enabled, which are otherwise disallowed.
- Used during SIL deserialization to determine whether such
functions are allowed.
- Used to determine if a callee can be inlined into a caller
that's serialized without package-cmo, e.g. with an explicit
annotation like @inlinable, where the callee was serialized
due to package-cmo.
Resolves rdar://127870822
CountAttributedType and TypeCoupledDeclRefInfo are new Clang type
and type metadata created for types with the 'counted_by' attribute
that shouldn't be accessible from Swift right now. Hence, marking
them unreachable.
When swift dependency scanner first finds a binary module for a testable
import, verify if the module is built for enable-testing or not. If not,
keeps searching in case there is a second testable binary module in the
search path.
Previously, the first binary module will always be accepted by scanner
and rely on the importer to provide a good diagnostics. Now the scanner
will emit a warning before continue searching, so user understands why
the binary in the search path is not taken.
Cleanup testable module lookup implementation by explicitly lookup
binary module only when requested, rather than changing the scanner
module load mode.
Non-error resilient call sites like this:
DeclContext *DC = MF.getDeclContext(contextID);
Can be replaced with this error tolerant alternative:
DeclContext *DC;
UNWRAP(MF.getDeclContextChecked(contextID), DC);
SILOptions::EnableSerializePackage info is lost.
SILVerifier needs this info to determine whether resilience
can be bypassed for decls serialized in a resiliently
built module when Package CMO optimization enabled.
This PR adds SerializePackageEnabled bit to Module format
and uses that in SILVerifier.
Resolves rdar://126157356
If a testable module is loaded from a non-testable import, ignore its
optional dependencies because the consumer should not use them. This
matches the behavior of the implicit build or the behavior how
forwarding module is created.
Conflicts:
lib/Basic/Platform.cpp
```
diff --git a/lib/Basic/Platform.cpp b/lib/Basic/Platform.cpp
index 240edfa144a..1797c87635f 100644
--- a/lib/Basic/Platform.cpp
+++ b/lib/Basic/Platform.cpp
@@ -200,10 +200,7 @@ StringRef swift::getPlatformNameForTriple(const llvm::Triple &triple) {
case llvm::Triple::CUDA:
case llvm::Triple::DragonFly:
case llvm::Triple::DriverKit:
-<<<<<<< HEAD
case llvm::Triple::ELFIAMCU:
-=======
->>>>>>> main
case llvm::Triple::Emscripten:
case llvm::Triple::Fuchsia:
case llvm::Triple::HermitCore:
```
Use the self interface type instead of the declared interface type, to
get the right type for tuple conformances and the DistributedActor-as-Actor
abstract conformance.
Add the machinery to support suppression of inference of conformance to
protocols that would otherwise be derived automatically.
This commit does not enable any conformances to be suppressed.
When caching is enabled with include-tree, the bridging header PCH is
created from the include tree directly. Setup the rewriter correctly
when embedding the bridging header into swift binary module.
rdar://125719747
This change introduces a new compilation target platform to the Swift compiler - visionOS.
- Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target.
- Addition of the new platform kind definition.
- Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries.
- Utilities to read out Darwin platform SDK info containing platform mapping data.
- Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback').
- Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path.
- Changes to existing test suite to accomodate the new platform.
Follow-up adjustment for binary module selection in dependency scanning
time. If a testable binary module doesn't have an interface file, it
should be used even it might pull in more dependencies.
LLVM is gearing up to move to `std::endianness` and as part of that has
moved `llvm::support::endianness` to `llvm::endianness`
(bbdbcd83e6702f314d147a680247058a899ba261). Rename our uses.
Teach scanner to pick and choose binary modules correctly based on if it
is testable import or not. Some situations that scanner need to be
careful when testable is involved:
* When it is a regular import, it should not import binary modules that
are built with -enable-testing, it should prefer interfaces if that is
available.
* When testable import, it should only load binary module and it should
make sure the internal imports from binary modules are actually
required for testable import to work.
If a testable import only find a regular binary module, dependency
scanner currently will just preceed with such module and leave the
diagnostics to swift-frontend, because the alternative (failed to find
module) can be confusing to users.
rdar://125914165
Improve swift dependency scanner by validating and selecting dependency
module into scanner. This provides benefits that:
* Build system does not need to schedule interface compilation task if
the candidate module is picked, it can just use the candidate module
directly.
* There is no need for forwarding module in the explicit module build.
Since the build system is coordinating the build, there is no need for
the forwarding module in the module cache to avoid duplicated work,
* This also correctly supports all the module loading modes in the
dependency scanner.
This is achieved by only adding validate and up-to-date binary module as
the candidate module for swift interface module dependency. This allows
caching build to construct the correct dependency in the CAS. If there
is a candidate module for the interface module, dependency scanner will
return a binary module dependency in the dependency graph.
The legacy behavior is mostly preserved with a hidden frontend flag
`-no-scanner-module-validation`, while the scanner output is mostly
interchangeable with new scanner behavior with `prefer-interface` module
loading mode except the candidate module will not be returned.
rdar://123711823
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
Pitch - https://github.com/apple/swift-evolution/pull/2305
Changes highlights:
dependsOn(paramName) and dependsOn(scoped argName) syntax
dependsOn(paramName) -> copy lifetime dependence for all parameters/self except
when we have Escapable parameters/self, we assign scope
lifetime dependence.
Allow lifetime dependence on parameters without ownership modifier.
Always infer copy lifetime dependence except when we have
Escapable parameters/self, we infer scope lifetime dependence.
Allow lifetime dependence inference on parameters without ownership modifier.