The crash on `SILFunction type mismatch` provides little information and
tends to be difficult to reproduce. Let's print some of the available
information and distinguish the two failure sites.
I'm not confident all required information is written down so we may
need to improve this further in the future. This version still crashes
the compiler, we may want a proper type-check to prevent this failure
with a clean diagnostic for the example used here.
rdar://53821031
This disallows building an interface file that imports such module which should be allowed
since interface does not contain package symbols unless usableFromInline or inlinable.
This change limits erroring only when building a .swift file.
Resolves rdar://108633068
If we have both loaded a swiftdoc, and the decl we
have should have had its doc comment serialized into
it, we can check it without needing to fall back
to the swiftsourceinfo.
This requires a couple of refactorings:
- Factoring out the `shouldIncludeDecl` logic
into `getDocCommentSerializationTargetFor` for
determining whether a doc comment should end up
in the swiftdoc or not.
- Factoring out `CommentProviderFinder` for searching
for the doc providing comment decl for brief
comments, in order to allow us to avoid querying
the raw comment when searching for it. This has the
added bonus of meaning we no longer need to fall
back to parsing the raw comment for the brief
comment if the comment is provided by another decl
in the swiftdoc.
This diff is best viewed without whitespace.
Previously we were using the same set of conditions
for serializing as for swiftdoc, so excluded them.
However it's reasonable to have them in the
swiftsourceinfo.
Parse compound and special names in the macro role attributes
(`@freestanding` and `@attached`). This allows both compound names and
initializers, e.g., `init(coding:)`.
Fixes rdar://107967344.
Given a scenario where a public type A, conforms to an internal protocol
B, which conforms to a public protocol C. A conforms indirectly to C
through a protocol that's hidden from the clients.
This is handled in module interface by printing the indirect conformance
of A to C explicitly at the end of the swiftinterface.
We have the same problem with deserialization safety that used to hide
the internal protocols from clients, thus breaking the knowledge of the
indirect dependency. To keep the indirect conformances, let's consider
all protocols as safe and preserve their conformance information.
rdar://105241772
They may be a super-set of the ones that appear in the textual interface - e.g. 'internal' imports will be contained in the adjacent binary module, but not the textual interface
For a `@Testable` import in program source, if a Swift interface dependency is discovered, and has an adjacent binary `.swiftmodule`, open up the module, and pull in its optional dependencies. If an optional dependency cannot be resolved on the filesystem, fail silently without raising a diagnostic.
When reading a swiftmodule that's part of the main module the compiler
should have access to all internal details. In that case, read the
underlying type to opaque types.
This was caught by `SILOptimizer/specialize_opaque_result_types2.sil`
which has a merge-module like behavior reading it sib files as input.
Clients of a resilient module using opaque types don't need access to
the underlying type unless it's used in an inlinable context. Plus, the
underlying type can reference internal details which can lead to crashes
when they reference implementation-only dependencies. To clean up this
behavior, let's only serialize the underlying type if used by an
inlinable function.
rdar://105128784
The macro name resolution in the source lookup cache was only looking at
macros in the current module, meaning that any names introduced by peer
or declaration macros declared in one module but used in another would
not be found by name lookup.
Switch the source lookup cache over to using the same
`forEachPotentialResolvedMacro` API that is used by lookup within
types, so we have consistent name-lookup-level macro resolution in both
places.
... except that would be horribly cyclic, of course, so introduce name
lookup flags to ignore top-level declarations introduced by macro
expansions. This is semantically correct because macro expansions are
not allowed to introduce new macros anyway, because that would have
been a terrible idea.
Fixes rdar://107321469. Peer and declaration macros at module scope
should work a whole lot better now.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
This is used to teach the checker that the thing being checked is supposed to be
uninitialized at the mark_must_check point so that we don't put a destroy_addr
there.
The way this is implemented is that we always initially add
assignable_but_not_consumable but in DI once we discover that the assign we are
guarding is an init, we convert the assignable to its initable variant.
rdar://106525988
On both input moduel source-files and interface files.
This currently yields dramatic scanning performance improvements at no cost - we do not require an AST during scan.
Implementation-only dependencies may be referenced from internal decls.
When that module is imported as @testable, clients see the internal
decls and may fail accessing them if the transitive implementation-only
dependencies are not loaded.
Let's consider such transtive implementation-only dependencies as
optional for @testable imports. As such, the compiler will attempt to
load them for test targets, and won't fail if the dependency is missing.
We can make these dependencies required for non-public imports, but it
could be project breaking to do so for implementation-only dependencies.
Considering them as optional is a decent compromise.
rdar://79459263
When using the -testable-import-module argument to insert a testable
import, there's no ImportDecl on which to show the diagnostics when
loading transitive dependencies. Clean up the logic to still load
dependencies in such a case.
A @testable import allows a client to call internal decls which may
refer to non-public dependencies. To support such a use case, load
non-public transitive dependencies of a module when it's imported
@testable from the main module.
This replaces the previous behavior where we loaded those dependencies
for any modules built for testing. This was risky as we would load more
module for any debug build, opening the door to a different behavior
between debug and release builds. In contrast, applying this logic to
@testable clients will only change the behavior of test targets.
rdar://107329303
The new diagnoseSerializedASTLoadFailureTransitive diagnose problems for
transitive dependencies only: missing dependency, missing underlying
module, or circular dependency.