Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
This change separates out the formation of the generic signature and
substitutions for a SIL substituted function type as a pre-pass
before doing the actual function type lowering. The only input we
really need to form this signature is the original abstraction pattern
that a type is being lowered against, and pre-computing it should make
the code less side-effecty and confusing. It also allows us to handle
generic nominal types in a more robust way; we transfer over all of
the nominal type requirements to the generalized generic signature,
then when recursively visiting the bindings, we same-type-constrain
the generic parameters used in those requirements to the newly-generalized
generic arguments. This ensures that the minimized signature preserves
any non-trivial requirements imposed by the nominal type, such as
conditional conformances on its type arguments, same-type constraints
among associated types, etc.
This approach does lead to less-than-optimal generalized generic
signatures getting generated, since nominal type generic arguments
get same-type-bound either to other generic arguments or fixed to
concrete types almost always. It would be useful to do a minimization
pass on the final generic signature to eliminate these unnecessary
generic arguments, but that can be done in a follow-up PR.
The SIL type lowering logic for AutoDiff gets the substituted generic signature
mixed up with the invocation generic signature, so it tries to ask questions
about DependentMemberTypes in a signature with no requirements. This triggers
assertions when the requirement machine is enabled.
Disable the requirement machine until this is fixed.
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.
It can already only accept values with none ownership and the merging of
ownership around ownership phis ensure that if we phi this with a partial_apply
or the like, we get the appropriate ownership on any such ownership phi values.
We are now out of SILGen emitting fewer destroy_value unnecessarily on
thin_to_thick functions. This changed some codegen and also forced me to update
some tests/fix AutoDiff.
I also deleted the DebugInfo test mandatoryinlining-wrongdebugscope.swift since:
1. It was depending on these destroys being there.
2. Given the need to improve the test @aprantl suggested I just eliminate it
solving the test failure for me.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
Previously, two conditions were necessary to enable differentiable programming:
- Using the `-enable-experimental-differentiable-programming` frontend flag.
- Importing the `_Differentiation` module.
Importing the `_Differentiation` module is the true condition because it
contains the required compiler-known `Differentiable` protocol. The frontend
flag is redundant and cumbersome.
Now, the frontend flag is removed.
Importing `_Differentiation` is the only condition.