Previously, we skipped checking the return type of a function for safety
as we expected to warn at the use of the returned value:
let x = returnsUnsafe()
usesUnsafe(x) // warn here
Unfortunately, this resulted in missing some unsafe constructs that can
introduce memory safety issues when the use of the return value had a
different shape resulting in false negatives for cases like:
return returnsUnsafe()
or
usesUnsafe(returnsUnsafe())
This PR changes the analysis to always take return types of function
calls into account.
rdar://157237301
Integer literal expressions with types that are not of type `int` are
printed with a suffix to indicate the type (e.g. `123U` or `456L` for
`unsigned` and `long`). This is not valid syntax for integer literals in
Swift, so until we fully translate the count expr syntax to Swift we
need to avoid importing these count expressions.
Also fixes some -Werror related stuff in test cases.
rdar://154141719
This enables -strict-memory-safety -warnings-as-errors on the Swift side
to verify that the macro expansions don't cause any warnings and that
they use `unsafe` correctly. On the clang side it enables -Xcc -Werror.
To reduce noise in the test output and pass -Werror cleanly it also
enables -Xcc -Wno-nullability-completeness. This will make it easier to
detect mistakes when writing tests, because warnings stand out whereas
previously they've been drowned out in the noise.
Previously we would emit a macro that would error on expansion when
trying to add a safe wrapper to a function with __sized_by on a type
that mapped to UnsafePointer<T> instead of UnsafeRawPointer or
OpaquePointer. __sized_by is acceptable when used on byte-sized pointee
types, so this adds machinery in the macro expansion to support that.
Meanwhile on the ClangImporter side, we add a check so that __sized_by
on pointee types with a size is ignored if that size is larger than 1
byte.
When _SwiftifyImport applies .sizedBy to a pointer of type
UnsafePointer<T> it will still map it to a
RawSpan/UnsafeRawBufferPointer in the safe overload. The assumption is
that any API using __sized_by is dealing with raw bytes, so raw pointers
are a better Swift abstraction than UnsafePointer<CChar> etc. It also
lets the user avoid doing a scary pointer cast from some potentially
larger-than-byte-sized pointer to a byte-sized pointer. Casts to
RawPointers are generally safer and more ergonomic.
rdar://150966684
rdar://150966021
Previously we did not remove count parameters if any count parameters
were shared between count expressions, or if any count expression
contained operations. Buffer sizes were also just checked to be larger
than or equal than the given count.
We now extract the count from Spans/BufferPointers whenever possible,
and store that value in a variable at the start of the function. If
multiple parameters share the same count, a bounds check is emitted to
make sure that they have the same size. Subspans can be used if one span
is larger than necessary.
The message in the bounds check is changed so that it includes the
expected and actual value, to aid in debugging.
This patch also fixes some incorrect indentation, and adds the
Whitespace.swift test case to act as a regression test in case the
indentation changes, since the other test cases don't use significant
whitespace.
rdar://151488820
rdar://151511090
rdar://146333006
rdar://147715799
Previously we would only add @_disfavoredOverload if the only type
changed was the return type, because in any other case it is unambiguous
which overload to call. However it is still ambiguous when storing the
function as a value rather than calling the function, unless explicit
type annotations are used.
To avoid breaking any existing code, this patch adds
@_disfavoredOverload to every overload generated by @_SwiftifyImport.
rdar://151206394
Swift nodes imported from clang don't have doc comments carried over,
but IDEs are clever enough to fetch the comments from the associated
clang node. The swift node in the macro expansion from _SwiftifyImport
doesn't have a clang node directly associated with it however.
This patch adds the same comment from the clang node to the
_SwiftifyImport macro invocation node. Since the macro has access to
this node, it can easily copy over its leading trivia.
For now the comment is not altered at all, meaning @param still remains
even if the parmeter is removed.
rdar://151346977
When we generate a safe wrapper that only differs in the return type we
might introduce ambiguities as some callers might not have enough
information to disambiguate between the overloads. This PR makes sure
the newly generated declarations are marked as @_disfavoredOverload so
the compiler can keep calling the old functions without a source break
when the feature is turned on.
rdar://139074571
This passes along the noescape attribute to @_SwiftifyImport as
.noescape(pointer: .param(X)). This allows importing parameters as Span,
MutableSpan and RawSpan.
This makes it possible to mark a pointer with __sized_by when the
pointee type definition is not included. The wrapper function has the
same interface as if the parameter were a void pointer, since the stdlib
has no `OpaqueBufferPointer` type.
* use swift-ide-test for checking interop signatures
* add xfail test for Span + Optional combo (Optional requires Escapable)