Commit Graph

5 Commits

Author SHA1 Message Date
Slava Pestov
41df661160 AST: Use a builtin conformance for unconditional Copyable/Escapable
This generalizes what we were already doing for classes.
2024-03-07 15:07:47 -05:00
Slava Pestov
bca5aa728f Mark two more hanging tests as UNSUPPORTED: noncopyable_generics 2024-02-05 18:43:06 -05:00
Josh Soref
730b16c569 Spelling siloptimizer
* access
* accessed
* accesses
* accessor
* acquiring
* across
* activated
* additive
* address
* addresses'
* aggregated
* analysis
* and
* appropriately
* archetype
* argument
* associated
* availability
* barriers
* because
* been
* beginning
* belongs
* beneficial
* blocks
* borrow
* builtin
* cannot
* canonical
* canonicalize
* clazz
* cleanup
* coalesceable
* coalesced
* comparisons
* completely
* component
* computed
* concrete
* conjunction
* conservatively
* constituent
* construct
* consuming
* containing
* covered
* creates
* critical
* dataflow
* declaration
* defined
* defining
* definition
* deinitialization
* deliberately
* dependencies
* dependent
* deserialized
* destroy
* deterministic
* deterministically
* devirtualizes
* diagnostic
* diagnostics
* differentiation
* disable
* discipline
* dominate
* dominates
* don't
* element
* eliminate
* eliminating
* elimination
* embedded
* encounter
* epilogue
* epsilon
* escape
* escaping
* essential
* evaluating
* evaluation
* evaluator
* executing
* existential
* existentials
* explicit
* expression
* extended
* extension
* extract
* for
* from
* function
* generic
* guarantee
* guaranteed
* happened
* heuristic
* however
* identifiable
* immediately
* implementation
* improper
* include
* infinite
* initialize
* initialized
* initializer
* inside
* instruction
* interference
* interferes
* interleaved
* internal
* intersection
* intractable
* intrinsic
* invalidates
* irreducible
* irrelevant
* language
* lifetime
* literal
* looks
* materialize
* meaning
* mergeable
* might
* mimics
* modification
* modifies
* multiple
* mutating
* necessarily
* necessary
* needsmultiplecopies
* nonetheless
* nothing
* occurred
* occurs
* optimization
* optimizing
* original
* outside
* overflow
* overlapping
* overridden
* owned
* ownership
* parallel
* parameter
* paths
* patterns
* pipeline
* plottable
* possible
* potentially
* practically
* preamble
* precede
* preceding
* predecessor
* preferable
* preparation
* probably
* projection
* properties
* property
* protocol
* reabstraction
* reachable
* recognized
* recursive
* recursively
* redundant
* reentrancy
* referenced
* registry
* reinitialization
* reload
* represent
* requires
* response
* responsible
* retrieving
* returned
* returning
* returns
* rewriting
* rewritten
* sample
* scenarios
* scope
* should
* sideeffects
* similar
* simplify
* simplifycfg
* somewhat
* spaghetti
* specialization
* specializations
* specialized
* specially
* statistically
* substitute
* substitution
* succeeds
* successful
* successfully
* successor
* superfluous
* surprisingly
* suspension
* swift
* targeted
* that
* that our
* the
* therefore
* this
* those
* threshold
* through
* transform
* transformation
* truncated
* ultimate
* unchecked
* uninitialized
* unlikely
* unmanaged
* unoptimized key
* updataflow
* usefulness
* utilities
* villain
* whenever
* writes

Signed-off-by: Josh Soref <jsoref@users.noreply.github.com>
2022-10-03 18:31:33 -04:00
Erik Eckstein
0cde46889e tests: Fix test for detecting generic specialization explosions.
The test worked but didn't test what it should test.
2018-07-11 12:45:21 -07:00
Roman Levenstein
8503daee0d Implement a more robust way to avoid infinite generic specialization loops
The existing simple mechanism for avoiding infinite generic specialization loops is based on checking the structural depth and width of types passed as generic type parameters. If the depth or the width of a type is above a certain threshold, the type is considered too complex for generic specialization and no specialization is produced. While this approach prevents the possibility of producing an infinite number of generic specializations for ever-growing generic type parameters, it catches the issue too late in some cases, leading to excessive CPU and memory usage.

Therefore, the new method tries to solve the problem at its root. An infinite generic specialization loop can be triggered by specializing a given generic call-site if and only if:
-  Doing so would result in a loop inside the specialization graph represented by the `GenericSpecializationInformations`, i.e. it would produce direct or indirect recursion involving a generic call
-  The substitutions used by the current generic call-site are structurally more complex than the substitutions used by the same call-site in the previous iteration inside specialization graph. More complex in this context means that the new generic type parameter structurally contains the generic type parameter from a previous iteration inside the specialization graph and has greater structural depth, e.g. `Array<Int>` is more complex than `Int`.

The generic specializer now records all the required information about specializations it produces and uses it later to detect and prevent any generic specializations which would result in an infinite specialization loop. It detects them as early as possible and thus reduces compile times, memory consumption and potentially also reduces the code-size by not generating useless specializations.
2017-08-06 12:51:49 -07:00