This improves support for promoting to and generating
unchecked_ref_cast so we no longer need unchecked_ref_bit_cast, which
will just go away in the next commit.
Swift SVN r32597
If the compiler can prove that a throwing function actually does not throw it can
replace a try_apply with an "apply [nothrow]". Such an apply_inst calls a function
with an error result but does not have the overhead of checking for the error case.
Currently this flag is not set, yet.
Swift SVN r31151
dealloc_ref [destructor] is the existing behavior. It expects the
reference count to have reached zero and the isDeallocating bit to
be set.
The new [constructor] variant first drops the initial strong
reference.
This allows DI to properly free uninitialized instances in
constructors. Previously this would fail with an assertion if the
runtime was built with debugging enabled.
Progress on <rdar://problem/21991742>.
Swift SVN r31142
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29490
Represents a heap allocation containing a value of type T, which we'll be able to use to represent the payloads of indirect enum cases, and also improve codegen of current boxes, which generates non-uniqued box metadata on every allocation, which is dumb. No codegen changes or IRGen support yet; that will come later.
This time, fix a paste-o that caused SILBlockStorageTypes to get replaced with SILBoxTypes during type substitution. Oops.
Swift SVN r29489
This reverts commit r29475 because it conflicts with reverting r29474,
and it looks like that commit is breaking the build of the SpriteKit
overlay.
Swift SVN r29481
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29475
Represents a heap allocation containing a value of type T, which we'll be able to use to represent the payloads of indirect enum cases, and also improve codegen of current boxes, which generates non-uniqued box metadata on every allocation, which is dumb. No codegen changes or IRGen support yet; that will come later.
Swift SVN r29474
This shouldn't affect anything in practice but it's best to be deterministic.
(Although I'm not sure why the previous mode was nondeterministic.)
Swift SVN r28580
The internal details of ErrorType are still being designed.
They should be underscored in the meantime to
indicate they are still evolving.
Implements rdar://problem/20927102.
Swift SVN r28500
This matches how dispatch_once works in C, dramatically cutting the cost of a global accessor by avoiding the runtime call in the hot path and giving the global a unique branch for the CPU to predict away. For now, only do this for Darwin; non-ObjC platforms don't necessarily expose their "done" value as ABI like ours do.
While we're here, change "once" to take a thin function pointer. We don't ever emit global initializers with context dependencies, and this simplifies the runtime glue between swift_once and dispatch_once/std::call_once a bit.
Swift SVN r28166
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
implemented with Builtin.Word
The definition Swift.Int is becoming heavily platform-dependent, please
avoid using it in SIL and IR tests unless Swift.Int is being tested and
can't be replaced with a fixed-width type (e.g., Int32).
Swift SVN r24720
This exposes a problem with the sil_vtable parser, that it can't differentiate overloads (rdar://problem/19572342), and breaks a test that exposes the fact we don't reabstract overrides that have a less abstract native calling convention than their base (rdar://problem/19572664).
Swift SVN r24667
rdar://problem/17198298
- Allow 'static' in protocol property and func requirements, but not 'class'.
- Allow 'static' methods in classes - they are 'class final'.
- Only allow 'class' methods in classes (or extensions of classes)
- Remove now unneeded diagnostics related to finding 'static' in previously banned places.
- Update relevant diagnostics to make the new rules clear.
Swift SVN r24260
Verify that witness_method instructions with a lookup type that is an
opened archetype have the optional operand that represents the
open_existential instruction.
I ran into this working supporting substitution of existential types in
mandatory inlining (rdar://problem/17769717).
Swift SVN r23665
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22812
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22795
Modeling builtins as first-class function values doesn't really make sense because there's no real function value to emit, and modeling them this way complicates passes that work with builtins because they have to invent function types for builtin invocations. It's much more straightforward to have a single instruction that references the builtin by ID, along with the type information for the necessary values, type parameters, and results, so add a new "builtin" instruction that directly represents a builtin invocation. NFC yet.
Swift SVN r22690