Resolves rdar://152598492
Consider the following Swift, adapted from a real-world framework:
```swift
@available(macOS 10.8, *)
@_originallyDefinedIn(module: "another", macOS 11.0)
public struct SimpleStruct {}
@available(macOS 12.0, iOS 13.0, *)
public extension SimpleStruct {
struct InnerStruct {}
}
```
In this scenario, `SimpleStruct` was originally in a module called
`another`, but was migrated to this module around the time of macOS
11.0. Since then, the module was ported to iOS and gained a nested type
`SimpleStruct.InnerStruct`. When mangling USRs for this nested type, the
result differs depending on whether we're targeting macOS or iOS.
They're mostly the same, but the macOS build yields a USR with an `AAE`
infix, designating that the `InnerStruct` was defined in an extension
from a module with the name of the base module. On iOS, this infix does
not exist.
The reason this is happening is because of the implementation of
`getAlternateModuleName` checking the availability spec in the
`@_originallyDefinedIn` attribute against the currently active target.
If the target matches the spec, then the alternate module name is
reported, otherwise the real module name is. Since the iOS build reports
the real module name, the mangling code doesn't bother including the
extension-context infix, instead just opting to include the parent
type's name and moving on.
This PR routes around this issue by passing the
`RespectOriginallyDefinedIn` variable to the
`ExtensionDecl::isInSameDefiningModule` method, and using that to skip
the alternate module name entirely. It also sets
`RespectOriginallyDefinedIn` to `false` in more places when mangling
USRs, but i'm not 100% confident that it was all necessary. The goal was
to make USRs more consistent across platforms, regardless of the
surrounding context.
Diagnostics can outlive the ConstraintSystem itself if we have a
diagnostic transaction for e.g `typeCheckParameterDefault`, make sure
we don't try to use a solver-allocated type as an argument.
Adjust isolation checking to handle misused `isolated` attribute
and let attribute checker property diagnose it.
Resolves: rdar://148076903
Resolves: https://github.com/swiftlang/swift/issues/80363
Infer result type of a subscript with Array or Dictionary base type
if argument type matches the key type exactly or it's a supported
literal type.
This helps to maintain the existing behavior without having to resort
to "favored type" computation.
When matching candidate like `[Int]` against `Array<Element>`
we need to conservatively assume that if the nominals match
the argument is a viable exact match because otherwise it's
possible to skip some of the valid matches when other overload
choice have generic parameters at the same parameter position.
The problem this is trying to solve is eager selection of operators
over unsupported disjunctions, when matching operators let's take
speculative information into account because it helps to make better
choices in this case.
The test was slow with hacks but now it's much faster - takes about
63k scopes to solve, it could be improved by introducing new overloads
of prefix `-` to stdlib.
Some of the disjunctions are not supported by the optimizers but
could still be a better choice than an operator. Using a non-score
based preference mechanism first allows us to make sure that
operator disjunctions are not selected too eagerly in some situations
when i.e. a member (supported or not) could be a better choice.
`isPreferable` currently targets only operators in result builder
contexts but it could be expanded to more uses in the future.
New ranking + selection algorithm suffered from over-eagerly selecting
operator disjunctions vs. unsupported non-operator ones even if the
ranking was based purely on literal candidates.
This change introduces a notion of a speculative candidate - one which
has a type inferred from a literal or an initializer call that has
failable overloads and/or implicit conversions (i.e. Double/CGFloat).
`determineBestChoicesInContext` would reset the score of an operator
disjunction which was computed based on speculative candidates alone
but would preserve favoring information. This way selection algorithm
would not be skewed towards operators and at the same time if there
is no no choice by to select one we'd still have favoring information
available which is important for operator chains that consist purely
of literals.
If there are no-same type requirements and parameters use
either concrete types or generic parameter types directly,
the optimizer should be able to handle ranking. Currently
candidate arguments are considered in isolation which makes
it impossible to deal with same-type requirements and
complex generic signatures.
rdar://153681688
Instead fo counting the actual conformances, the logic took the size of the bit field, i.e. used the highest set bit, so when a type had a conditional conformance only on ~Escapable, but not on ~Copyable, it would still add 2 placeholders, but only fill one.
Turns out we can also get solver-allocated original ErrorTypes through
type resolution. Given the original type is only used for
printing/debugging, let's just fold away any type variables and
placeholders into UnresolvedType (which print as placeholders). This
matches what `Solution::simplifyType` does.