To add a module pass in `Passes.def` use the new `SWIFT_MODULE_PASS` macro.
On the swift side, create a `ModulePass`.
It’s run function receives a `ModulePassContext`, which provides access to all functions of a module.
But it doesn't provide any APIs to modify functions.
In order to modify a function, a module pass must use `ModulePassContext.transform(function:)`.
While I was using the new AccessUtils for a new optimization pass I discovered some areas for improvements. Also I found some bugs.
Changes:
* AccessBase: remove the unhealthy redundancy between `kind` and `baseAddress` types. Now AccessBase is single enum with the relevant base objects/addresses as payloads.
* AccessBase: for `global`, store the `GlobalValue` and not a `global_address` instruction, which is more accurate (because there can be multiple `global_addr`s for a single global variable)
* AccessBase: drop the support for function argument "pointers". The `pointer` is now always a `pointer_to_address` instruction. This also simplifies `PointerIdentification`: either it finds a matching `address_to_pointer` or it bails.
* AccessBase: improve `func isDistinct(from:)`. There are more possibilities to prove that two access bases do not alias.
* AccessBase: replace `var isUniquelyIdentified` with `var hasKnownStorageKind` which is more useful for aliasing checking.
* AccessPath: fix `func isDistinct(from:)`. `SmallProjectionPath.matches` is the wrong way to check if two expression paths may overlap. Instead use the new `SmallProjectionPath.mayOverlap`.
* AccessStoragePathWalker: rename `getAccessStorage` -> `visitAccessStorageRoots` and let it return false if it's not a class/reference AccessBase.
* add tests for `AccessPath.isDistinct(from:)`
* "merge" the `Path` and `State` in WalkUtils into a single `WalkingPath`. This makes it simpler for clients to configure a path and additional state variables. EscapeInfo now defines `EscapePath` which includes the projection path and EscapeInfo's specific state variables.
* Make the `WalkerCache` part of the WalkUtils, so that not all clients have to re-implement it.
* Rename `walkDownResults` -> `walkDownAllResults` and `walkUpOperands` -> `walkUpAllOperands` and make these functions client configurable.
These sets are _much_ more efficient than `Set<Value>` and `Set<Instruction>` because they bridge to the efficient `NodeSet`.
Insertions/deletions are just bit operations.
It's used to implement `InstructionSet` and `ValueSet`: sets of SILValues and SILInstructions.
Just like `BasicBlockSet` for basic blocks, the set is implemented by setting bits directly in SILNode.
This is super efficient because insertion and deletion to/from the set are basic bit operations.
The cost is an additional word in SILNode. But this is basically negligible: it just adds ~0.7% of memory used for SILInstructions.
In my experiments, I didn't see any relevant changes in memory consumption or compile time.
`EscapeInfo` now conforms to the generic protocols defined in `WalkUtils`.
This simplifies the implementation a bit, since trivial instructions are handled
by `WalkUtils` and `EscapeInfo` only has to handle a subset of instructions
inherent to escape information.
Passes using `EscapeInfo` are updated accordingly to become visitors that
customize the `EscapeInfo` walk.
Introduces a set of protocols useful to perform def-use and use-def
traversals to find uses and definitions of values.
This logic was originally baked into `EscapeInfo` directly.
Here we extract it into general utilities, namely:
- `ValueDefUseWalker`: visit uses of a value walking down value-value projections/constructions.
- `AddressDefUseWalker`: visit uses of an address walking down addr-addr projections/constructions.
- `ValueUseDefWalker`: visit definitions of a value walking up value-value projections/constructions.
- `AddressUseDefWalker`: visit definitions of an address walking up addr-addr projections/constructions.
These utilities can then be used in other passes or to create
new utilities by composing them. For example to find a definition
passing through both address projections and value extractions,
it's enough to implement a visitor conforming to both
`AddressUseDefWalker` and `ValueUseDefWalker`.
Removes redundant ObjectiveC <-> Swift bridging calls.
Basically, if a value is bridged from ObjectiveC to Swift an then back to ObjectiveC again, then just re-use the original ObjectiveC value.
Also in this commit: add an additional DCE pass before ownership elimination. It can cleanup dead code which is left behind by the ObjCBridgingOptimization.
rdar://89987440
To use _RegexParser from SwiftSyntax.
* Create 'libswiftCompilerModules_SwiftSyntax.a' which is a subset of
'libswiftCompilerModules.a'
* Link 'lib_InternalSwiftSyntaxParser' to
'libswiftCompilerModules_SwiftSyntax.a'
* Factor out swift runtime linking logic in CMake so that dynamic
libraries can link to Swift runtime, in addition to executables
* Link 'lib_InternalSwiftSyntaxParser' to swift runtime
Utilities to make a value available to be used in another basic block.
Inserts required `copy_value` and `destroy_value` operations in case the destination block is in a different control region than the value.
For example, if the destination block is in a loop while the value is not in that loop, the value has to be copied for each loop iteration.
* split the PassUtils.swift file into PassContext.swift and Passes.swift
* rework `Builder` bridging allowing more insertion point variations, e.g. inserting at the end of a block.
* add Builder.create functions for more instructions
* add `PassContext.splitBlock`
* move SIL modification functions from PassContext to extensions of the relevant types (e.g. instructions).
* rename `Location.bridgedLocation` -> `Location.bridged`
and introduce the StringRef struct.
It's more efficient.
Also, rename the `HasName` protocol to `HasShortDescription`, which introduces the new requirement `shortDescription`. This is need because `name` now has `StringRef` type and not `String` anymore
Add a flag `analyzeAddresses` for distinguishing address vs value escape analysis. This is simpler than handling that in the visitUse/visitDef closures.
Also, fix a related bug, which let an address, which is escaping to a function, get unnoticed.
This fixes:
* An issue where the diagnostic messages were leaked
* Diagnose at correct position inside the regex literal
To do this:
* Introduce 'Parse' SwiftCompiler module that is a bridging layer
between '_CompilerRegexParser' and C++ libParse
* Move libswiftParseRegexLiteral and libswiftLexRegexLiteral to 'Parse'
Also this change makes 'SwiftCompilerSources/Package.swift' be configured
by CMake so it can actually be built with 'swift-build'.
rdar://92187284
The ComputeEffects pass derives escape information for function arguments and adds those effects in the function.
This needs a lot of changes in check-lines in the tests, because the effects are printed in SIL
It’s a replacement for the old `EscapeAnalysis`, implemented in Swift (instead of C++) and with a much simple design and implementation.
While the old EscapeAnalysis builds a connection graph, the new EscapeInfo just performs a simple def-use and use-def walk in the SIL.
The EscapeInfo does not need to analyze the whole function (like the EscapeAnalysis does), but just the relevant value which is inspected. Therefore EscapeInfo is not an `Analysis` which caches its result across optimization passes - it’s not needed.
The ComputeEffects pass derives escape information for function arguments and adds those effects in the function.
This needs a lot of changes in check-lines in the tests, because the effects are printed in SIL
It’s a replacement for the old `EscapeAnalysis`, implemented in Swift (instead of C++) and with a much simple design and implementation.
While the old EscapeAnalysis builds a connection graph, the new EscapeInfo just performs a simple def-use and use-def walk in the SIL.
The EscapeInfo does not need to analyze the whole function (like the EscapeAnalysis does), but just the relevant value which is inspected. Therefore EscapeInfo is not an `Analysis` which caches its result across optimization passes - it’s not needed.
Currently, SwiftCompilerSources' inclusion of the regex parser depends on CMake flag `SWIFT_ENABLE_EXPERIMENTAL_STRING_PROCESSING`. However, in some scenarios we want to build the regex parser as part of the compiler _without_ building the runtime modules. This patch makes building the regex parser the default regardless of `SWIFT_ENABLE_EXPERIMENTAL_STRING_PROCESSING`. Only when the build environment is missing the string processing repo, we skip building the regex parser by setting `SWIFT_BUILD_REGEX_PARSER_IN_COMPILER` to false.
* C++: add a function `getDestructors(SILType type, bool isExactType)’: if the type is a final class or `isExactType` is true, then return the one and only destructor of that class.
* swift: add `getDestructor(ofExactType type: Type)` and `getIncompleteCallees`
* swift: remove `getDestructor` from the PassContext. The API of the `calleeAnalysis` can be used instead.
As the _MatchingEngine module no longer contains the matching engine, this patch renames this module to describe its role more accurately. Because this module primarily contains the AST and the regex parsing logic, I propose we rename it to "_RegexParser".
Also renames the ExperimentalRegex module in SwiftCompilerSources to _RegexParser for consistency. This would prevent errors if sources in _RegexParser used qualified lookup with the module name.
The release-devirtualizer must not run on the same alloc_ref twice.
This is a very rare case, but if it happens it's a very bad thing, because it results in a double-free crash.
The fix is to detect that a dealloc_ref instruction (although it isn't "releasing"), does a memory deallocation.
Found by doing some unrelated experiments.
Store a list of argument effects in a function, which specify if and how arguments escape.
Such effects can be specified in the Swift source code (for details see docs/ReferenceGuides/UnderscoredAttributes.md) or derived in an optimization pass.
For details see the documentation in SwiftCompilerSources/Sources/SIL/Effects.swift.