Builtin.FixedArray was introduced as the first generic builtin type, with
special case handling in all the various recursive visitors. Introduce
a base class, and move the handling to that base class, so it is easier
to introduce other generic builtins in the future.
For clients, such as the debugger, who do not have access the full
output of the dependency scanner, it is a huger performance and
correctness improvement if each explicitly built Swift module not just
serialized all its Clang .pcm dependencies (via the serialized Clang
compiler invocation) but also its direct Swift module dependencies.
This patch changes the Swift module format to store the absolute path
or cas cache key for each dependency in the INPUT block, and makes
sure the deserialization makes these available to the ESML.
rdar://150969755
When emitting SIL for `if #available(Swift ..., *)` queries, call the new
`_isSwiftRuntimeVersionAtLeast()` function in the stdlib to check the
condition. To support back deployment, the implementation of
`_isSwiftRuntimeVersionAtLeast()` is `@_alwaysEmitIntoClient` and performs its
comparison against the result of `_SwiftStdlibVersion.current`, which is
pre-existing ABI that the stdlib exposes for querying the Swift runtime
version.
Resolves rdar://162726037.
The `_Concurrency` and `_StringProcessing` modules are implementation details of the standard library; to developers, their contents should behave as though they are declared directly within module `Swift`. This is the exact same behavior we expect of cross-import overlays, so treat these modules as though they are cross-import overlays with no bystanding module.
Because these modules don’t re-export the standard library, it’s also necessary to treat `Swift` as a separately imported overlay of itself; do so and make that actually work.
-nostdimport and -nostdlibimport only remove the toolchain and usr/lib/swift search paths, and they leave the framework search paths intact. That makes it impossible to get a fully custom SDK environment. Make their behavior match clang's -nostdinc/-nostdlibinc behavior: treat framework and non-framework paths the same. In other words, -nostdinc removes *all* compiler provided search paths, and -nostdlibinc removes *all* SDK search paths.
Rename SkipRuntimeLibraryImportPaths to SkipAllImportPaths, and ExcludeSDKPathsFromRuntimeLibraryImportPaths to SkipSDKImportPaths to reflect their updated behavior.
Move the DarwinImplicitFrameworkSearchPaths handling from SearchPathOptions to CompilerInvocation, where RuntimeLibraryImportPaths is managed. Rename it to just ImplicitFrameworkSearchPaths, and filter for Darwin when it's set up so that all of the clients don't have to do Darwin filtering themselves later.
rdar://150557632
Previously we would insert StringRefs that reference the keys in the
map, but that breaks if the invocation ever gets copied. Switch to
`std::string`.
rdar://148130166
This hash is also used for the dependency scanning hash. In both cases, PCH contents may differ based on whether a certain module they depend on is found in a system or non-system search path. In dependency scanning, systemness should cause a full change of scanning context requiring a from-scratch scan.
Resolves rdar://150334077
Suppose module 'Foo' exists in the search paths and specifies user module version '1.0'.
If the first encountered 'canImport' query is unversioned:
...
Followed by a versioned one:
...
The success of the first check will record an unversioned successful canImport, which will cause the second check to evaluate to 'true', which is incorrect.
This change causes even unversioned 'canImport' checks to track and record the discovered user module version.
Specifically, when the scanner found a candidate which does not carry a user-specified version, it will pass '-module-can-import Foo' to compilation. During compilation, if the check is versioned but the candidate is unversioned, evaluate the check to 'true' to restore the behavior we had with implicitly-built modules.
Resolves rdar://148134993
The builtin’s current is signature is:
```
(Any.Type, Any.Type) -> Bool
```
This needs to be changed to this:
```
(any (~Copyable & ~Escapable).Type, any (~Copyable & ~Escapable).Type) -> Bool
```
This requires a bit of support work in AST synthesis.
rdar://145707064
Co-authored-by: Alejandro Alonso <alejandro_alonso@apple.com>
Switch over to split caching for the conformance isolation request,
which optimizes for the common case where the conformance is
nonisolated. Also put the explicit global actor TypeExpr* in an
ASTContext side table, so we don't take a pointer's worth of storage
in every conformance.
For that side table, introduce a new "ASTContext::GlobalCache" that's
there only for side tables, so we don't have to go add get/set
operations to ASTContext and recompile the world every time we want to
add a side table like this.
Thanks, Slava!
For build systems that already generate these files, it makes sense to include the aliases so that the map file serves as a comprehensive index of how the module inputs are referenced.
Introduce a new deserialization mode `enableExtendedDeserializationRecovery`
for use when we can afford inconsistent information from a swiftmodule
file. It's enabled automatically in debugger mode, when user errors are
allowed and during index-while-building.
* Move `AvailabilitySpec` handling logic to AST, so they can be shared
between libParse and ASTGen
* Requestify '-define-availability' arguments parsing and parse them
with 'SwiftParser' according to the 'ParserASTGen' feature flag
* Implement 'AvailableAttr' generation in ASTGen
Put AvailabilityRange into its own header with very few dependencies so that it
can be included freely in other headers that need to use it as a complete type.
NFC.
Protocol conformances have a handful attributes that can apply to them
directly, including @unchecked (for Sendable), @preconcurrency, and
@retroactive. Generalize this into an option set that we carry around,
so it's a bit easier to add them, as well as reworking the
serialization logic to deal with an arbitrary number of such options.
Use this generality to add support for @unsafe conformances, which are
needed when unsafe witnesses are used to conform to safe requirements.
Implement general support for @unsafe conformances, including
producing a single diagnostic per missing @unsafe that provides a
Fix-It and collects together all of the unsafe witnesses as notes.
This attribute will allow you to specify an alternate version of the declaration used for mangling. It will allow minor adjustments to be made to declarations so long as they’re still compatible at the calling convention level, such as refining isolation or sendability, renaming without breaking ABI, etc.
The attribute is behind the experimental feature flag `ABIAttribute`.
The availability macros definitions are parsed from the command line and
stored in a cache. The cache was in the Parser, which would have it be
computed for each file using availability macros. Let's move it to the
ASTContext instead where it can generally be computed once per invocation
and used across the module.
rdar://134797088
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
When looking up the decl context of a type, ASTDemangler has to take
into account that there are multiple different modules where that type
could've come from. This is due to two facts:
- Thanks to the `-module-abi-name` flag, multiple modules can share
the same ABI name (which is the module name that is usually used when
mangling a type).
- In some situations mangling can use the module's real name, for
example, when mangling for the debugger or USRs coupled with @_originallyDefinedIn.
rdar://134095412
It should no longer be necessary to provide an `@_alwaysEmitIntoClient` version
of `_diagnoseUnavailableCodeReached()`. This workaround was originally added to
provide compatibility with projects that were misconfigured to compile against
a newer stdlib but link against an older one.
Resolves rdar://119892482.
Fix the problem that when the only module can be found is an
invalid/out-of-date swift binary module, canImport and import statement
can have different view for if the module can be imported or not.
Now canImport will evaluate to false if the only module can be found for
name is an invalid swiftmodule, with a warning with the path to the
module so users will not be surprised by such behavior.
rdar://128876895
Separate swift-syntax libs for the compiler and for the library plugins.
Compiler communicates with library plugins using serialized messages
just like executable plugins.
* `lib/swift/host/compiler/lib_Compiler*.dylib`(`lib/CompilerSwiftSyntax`):
swift-syntax libraries for compiler. Library evolution is disabled.
* Compiler (`ASTGen` and `swiftIDEUtilsBridging`) only depends on
`lib/swift/host/compiler` libraries.
* `SwiftInProcPluginServer`: In-process plugin server shared library.
This has one `swift_inproc_plugins_handle_message` entry point that
receives a message and return the response.
* In the compiler
* Add `-in-process-plugin-server-path` front-end option, which specifies
the `SwiftInProcPluginServer` shared library path.
* Remove `LoadedLibraryPlugin`, because all library plugins are managed
by `SwiftInProcPluginServer`
* Introduce abstract `CompilerPlugin` class that has 2 subclasses:
* `LoadedExecutablePlugin` existing class that represents an
executable plugin
* `InProcessPlugins` wraps `dlopen`ed `SwiftInProcPluginServer`
* Unified the code path in `TypeCheckMacros.cpp` and `ASTGen`, the
difference between executable plugins and library plugins are now
abstracted by `CompilerPlugin`
Teach dependency scanner to report all the module canImport check result
to swift-frontend, so swift-frontend doesn't need to parse swiftmodule
or parse TBD file to determine the versions. This ensures dependency
scanner and swift-frontend will have the same resolution for all
canImport checks.
This also fixes two related issues:
* Previously, in order to get consistant results between scanner and
frontend, scanner will request building the module in canImport check
even it is not imported later. This slightly alters the definition of
the canImport to only succeed when the module can be found AND be
built. This also can affect the auto-link in such cases.
* For caching build, the location of the clang module is abstracted away
so swift-frontend cannot locate the TBD file to resolve
underlyingVersion.
rdar://128067152
A type's mangled name will store the module's ABI name, not the module's
regular name. When reconstructing a type from a mangled name, the
demangler needs to take that into account.
rdar://126953614
This change introduces a new compilation target platform to the Swift compiler - visionOS.
- Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target.
- Addition of the new platform kind definition.
- Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries.
- Utilities to read out Darwin platform SDK info containing platform mapping data.
- Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback').
- Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path.
- Changes to existing test suite to accomodate the new platform.