`discard self` requires knowledge of the internal layout of the type in order to clean
up its fields while bypassing its public `deinit`. Inlinable code can get copied into
and run from outside of the defining module, so this is impossible to implement.
Fixes rdar://160815058.
Consider functions in embedded mode to be fragile unless marked with
`@_neverEmitIntoClient`. Basically treating them as if they were
`@_alwaysEmitIntoClient` by default. A fragile function cannot reference
restricted imports such as `@_implementationOnly`, `internal import`,
etc.
We consider them as fragile only for type-checking, at the SIL level
they remain treated as normal functions like before. This allows the
later optimization to work as expected. We may want to likely align both
ends of the compiler once this is properly supported in sema.
This is enabled only in embedded. Fragile functions in library-evolution
are marked with attributes and are already checked. We do not need this
is non-embedded non-library-evolution as CMO handles inlining and
already takes into consideration `@_implementationOnly` imports.
Note: We'll need a similar check for memory layouts exposed to clients.
We can still see compiler crashes and miscompiles in this scenario. This
will apply to both embedded and non-library-evolution modes. That will
likely need to extend the `@_neverEmitIntoClient` attribute and may
require a staged deployment.
rdar://161365361
This is very brittle in this first iteration. For now we require the
declaration representing the availability domain be deserialized before it can
be looked up by name since Clang does not have a lookup table for availabilty
domains in its module representation. As a result, it only works for bridging
headers that are not precompiled.
Part of rdar://138441266.
Implicit initializers are given a source location within the type they belong to. This works poorly for @objc @implementation classes, because the class they belong to is imported and so those SourceLocs are in a different source buffer from the extension they’re inside, breaking an invariant enforced by index-while-building features.
Fix these SourceLocs to come from the implementation context, so they’ll come from the extension for an objcImpl class and the type itself otherwise.
Checking whether a declaration is in a `.swiftinterface` is a very common query
that is made somewhat awkward because declarations are not always in source
files. To make these checks more ergonomic, expose a convenience on
DeclContext.
decl being accessed is correct. When this assumption fails due to a deserialization error
of its members, the use site accesses the layout with a wrong field offset, resulting in
UB or a crash. The deserialization error is currently not caught at compile time due to
LangOpts.EnableDeserializationRecovery being enabled by default to allow for recovery of some
of the deserialization errors at a later time. In case of member deserialization, however,
it's not necessarily recovered later on.
This PR tracks whether member deserialization had an error by recursively loading members and
checking for deserialization error, and fails and emits a diagnostic. It provides a way to
prevent resilience bypassing when the deserialized decl's layout is incorrect.
Resolves rdar://132411524
When a declaration is `@unsafe`, don't emit strict safety diagnostics
for uses of unsafe entities, constructs, or types within it. This
allows one to account for all unsafe behavior in a module using strict
memory safety by marking the appropriate declarations `@unsafe`.
Enhance the strict-safety diagnostics to suggest the addition of
`@unsafe` where it is needed to suppress them, with a Fix-It. Ensure
that all such diagnostics can be suppressed via `@unsafe` so it's
possible to get to the above state.
Also includes a drive-by bug fix where we weren't diagnosing unsafe
methods overriding safe ones in some cases.
Fixes rdar://139467327.
Really this applies to any capture, not just
`self`. Also refactor to make it clear that
parent closures and functions are really the only
cases that matter here.
In #58965, lookup for custom derivatives in non-primary source files was
introduced. It required triggering delayed members parsing of nominal types in
a file if the file was compiled with differential programming enabled.
This patch introduces `CustomDerivativesRequest` to address the issue.
We only parse delayed members if tokens `@` and `derivative` appear
together inside skipped nominal type body (similar to how member operators
are handled).
Resolves#60102
Closures appearing in freestanding macro arguments don't have
discriminators assigned, since we don't actually emit them.
Similarly we skip recording opaque return types that appear in macro
arguments, since they don't get emitted.
However this logic didn't take delayed parsing into account, which must
save and restore the InFreestandingMacroArgument bit correctly.
As a result, if the freestanding macro argument contained a closure
which contained a local function with a declaration that has an
opaque return type, we would crash in serialization from attempting
to mangle an opaque return type nested inside of a closure without a
discriminator.
Fixes rdar://135445004
Fixes `cast<GenericContext>(someDecl)`.
I don't know why this didn't show up as a crash so far. But slightly changing `Decl` results in a wrong type cast and a crash.
Previously, the constraint solver would first attempt member lookup that
excluded members from transitively imported modules. If there were no viable
candidates, it would perform a second lookup that included the previously
excluded members, treating any candidates as unviable. This meant that if the
member reference did resolve to one of the unviable candidates the resulting
AST would be broken, which could cause unwanted knock-on diagnostics.
Now, members from transitively imported modules are always returned in the set
of viable candidates. However, scoring will always prioritize candidates from
directly imported modules over members from transitive imports. This solves the
ambiguities that `MemberImportVisibility` is designed to prevent. If the only
viable candidates are from transitively imported modules, though, then the
reference will be resolved successfully and diagnosed later in
`MiscDiagnostics.cpp`. The resulting AST will not contain any errors, which
ensures that necessary access levels can be computed correctly for the imports
suggested by `MemberImportVisibility` fix-its.
Resolves rdar://126637855.
If a function body is emitted, all of the declarations inside that function
body must be emitted, too. Previously, lazy var initializers were being skipped
regardless of whether the function containing them was skipped, resulting in
SIL verification errors (which were correctly predicting linker errors).
Resolves rdar://134708502.
By default package decls are treated as resilient, similar to public (non-frozen).
This PR adds support to allow direct access to package decls at use site if opted-in.
Requires the loaded module to be a binary module in the same package.
Resolves rdar://121626315
It's not clear that its worth keeping this as a
base class for SerializedAbstractClosure and
SerializedTopLevelCodeDecl, most clients are
interested in the concrete kinds, not only whether
the context is serialized.
Pre-macro-expansion conformances are introduced at the point where an
attached extension macro is attached to a particular nominal type, and
can imply other conformances. Once the macro is expanded, they are
expected to be replaced by the real conformance from the extension
produced by the macro. This includes any other conformances that are
implied by that conformances. Ensure that the real conformance---and
every conformances it implies---are considered "better" than the
pre-expansion conformances.
Fixes a bug where we would pick the wrong (pre-expansion)
conformances, which would then fail to get fully type-checked prior to
serialization. This could accept invalid code that then crashed the
compiler, as in rdar://112916159.
Fix two inter-related issues with extension macros that provide
conformances to a protocol, the combined effect of which is that one
cannot meaningfully provide extension macros that implement
conformances to a protocol like Equatable or Hashable that also
supports auto-synthesis.
The first issue involves name lookup of operators provided by macro
expansions. The logic for performing qualified lookup in addition to
unqualified lookup (for operators) did not account for extension
macros in the same manner as it did for member macros, so we would not
find a macro-produced operator (such as operator==) in witness
matching.
The second issue is more fundamental, which is that the conformance
lookup table would create `NormalProtocolConformance` instances for
pre-macro-expansion conformance entries, even though these should
always have been superseded by explicit conformances within the macro
expansion buffers. The end result is that we could end up with two
`NormalProtocolConformance` records for the same conformance. Some
code was taught to ignore the pre-expansion placeholder conformances,
other code was not. Instead, we now refuse to create a
`NormalProtocolConformance` for the pre-expansion entries, and remove
all of the special-case checks for this, so we always using the
superseding explicit conformances produced by the macro expansions (or
error if the macros don't produce them).
Fixes rdar://113994346 / https://github.com/apple/swift/issues/66348
Introduce `AvailableDuringLoweringDeclFilter` which can be composed with
`OptionalTransformRange` to implement iterators that filter out unavailable
decls.
stated in the original source.
If an extension macro can introduce protocol conformances, macro expansion
will check which of those protocols already have a stated conformance in the
original source. The protocols that don't will be passed as arguments to
extension macro expansion, indicating to the macro that it should only add
conformances to those protocols.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This source location will be used to determine whether to add a name lookup
option to exclude macro expansions when the name lookup request is constructed.
Currently, the source location argument is unused.
* Weakly reference ModuleDecl from PackageUnit
* Add PackageUnit decl context getter and use it for a package AccessScope
* Return module decl referenced by PackageUnit in getModuleScopeContext and getParentModule
* Handle package acl in access scope checkers
* Remove AccessLimitKind
* Fix tests
Resolves rdar://104987295, rdar://105187216, rdar://104723918
Previously enum AccessLimitKind was
added to distinguish access scopes b/t package and public while keeping
DeclContext null but it proved to be too limiting. This PR creates package specific entries for DeclContext and
ASTHierarchy. It create a new class PackageUnit that can be set as the parent DeclContext of ModuleDecl. This PR
contains addition of such entries but not the use of them; the actual use of them will be in the upcoming PRs.
Resolves rdar://106155600