A lot of the fixes here are adjustments to compensate in the
fulfillment and metadata-path subsystems for the recent pack
substitutions representation change. I think these adjustments
really make the case for why the change was the right one to make:
the code was clearly not considering the possibility of packs
in these positions, and the need to handle packs makes everything
work out much more cleanly.
There's still some work that needs to happen around type packs;
in particular, we're not caching them or fulfilling them as a
whole, and we do have the setup to do that properly now.
Added pack flavors of requirement kinds for metadata and witness tables.
Fixes the function signatures for variadic generic functions which
previously used %swift.type* for variadic generic parameters--those are
lists of metadata and should actually be %swift.type**.
For each decl that needs a `#_hasSymbol()` query function, emit the corresponding helper function body during IRGen. Use `IRSymbolVisitor` to collect linkable symbols associated with the decl and return true from the helper function if the address of every associated symbol is non-null.
Resolves rdar://101884587
The relationship between the code in these two libraries was fundamentally circular, indicating that they should not have been split. With other changes that I'm making to remove circular dependencies from the CMake build graph I eventually uncovered that these two libraries were required to link each other circularly, but that had been hidden by other cycles in the build graph previously.
This commit begins to generate correct metadata for @_objcImplementation extensions:
• Swift-specific metadata and symbols are not generated.
• For main-class @_objcImpls, we visit the class to emit metadata, but visit the extension’s members.
• Includes both IR tests and executable tests, including coverage of same-module @objc subclasses, different-module @objc subclasses, and clang subclasses.
The test cases do not yet cover stored properties.
non-throwing functions.
Activating swift-functions-errors tests
Inserting macros and additional parameters in C and C++ functions following the pattern to lowering to LLVM IR.
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This reverts the revert commit df353ff3c0.
Also, I added a frontend option to disable this optimization: `-disable-readonly-static-objects`
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This change extends the clang header printer to start emitting C++ classes for Swift struct types with the correct struct layout in them (size + alignment)
I wrote out this whole analysis of why different existential types
might have the same logical content, and then I turned around and
immediately uniqued existential shapes purely by logical content
rather than the (generalized) formal type. Oh well. At least it's
not too late to make ABI changes like this.
We now store a reference to a mangling of the generalized formal
type directly in the shape. This type alone is sufficient to unique
the shape:
- By the nature of the generalization algorithm, every type parameter
in the generalization signature should be mentioned in the
generalized formal type in a deterministic order.
- By the nature of the generalization algorithm, every other
requirement in the generalization signature should be implied
by the positions in which generalization type parameters appear
(e.g. because the formal type is C<T> & P, where C constrains
its type parameter for well-formedness).
- The requirement signature and type expression are extracted from
the existential type.
As a result, we no longer rely on computing a unique hash at
compile time.
Storing this separately from the requirement signature potentially
allows runtimes with general shape support to work with future
extensions to existential types even if they cannot demangle the
generalized formal type.
Storing the generalized formal type also allows us to easily and
reliably extract the formal type of the existential. Otherwise,
it's quite a heroic endeavor to match requirements back up with
primary associated types. Doing so would also only allows us to
extract *some* matching formal type, not necessarily the *right*
formal type. So there's some good synergy here.
This pipes the `-static` flag when building a static library into IRGen.
This should have no impact on non-Windows targets as the usage of the
information simply removes the `dllexport` attribute on the generated
interfaces. This ensures that a library built with `-static` will not
re-export its interfaces from the consumer. This is important to ensure
that the consumer does not vend the API surface when it statically links
a library. In conjunction with the removal of the force load symbol,
this allows the generation of static libraries which may be linked
against on Windows. However, a subsequent change is needed to ensure
that the consumer does not mark the symbol as being imported from a
foreign module (i.e. `dllimport`).
The RequirementSignature generalizes the old ArrayRef<Requirement>
which stores the minimal requirements that a conforming type's
witnesses must satisfy, to also record the protocol typealiases
defined in the protocol.