TypeInfoProvider's address was used as part of the key to cache type
infos. This can cause the unnecessary recomputation of type infos, as
different instances of TypeInfoProviders may provide the exact same type
infos. Allow TypeInfoProviders to provide an id which can be used for
caching purposes.
rdar://80001304
Fix computation of generic params per level when a generic type is
nested in a non-generic one. For example, for the following code:
```
class A {
class B<T, U> {
}
}
```
Fix the array of generic params per level from [2] to [0, 2].
rdar://103457629
This function demangles a std::string, but the demangler can create interior pointers into the string being demangled. Solve this by copying the string into the Demangler first.
readMangledName does the same thing. Consolidate the string copying code into a method on NodeFactory, then make both functions use it.
rdar://102275748
We can end up with a stack overflow if we encounter a very deeply nested type, or bad data that looks like one. Fail gracefully for types that are nested beyond a limit. By default, the limit is 50.
rdar://100847548
This function creates a demangled tree from a std::string, but the demangle tree can include pointers into the interior of the passed-in string, which become invalid on return. Copy the string into the demangler's own memory first, so that the lifetimes are correct.
rdar://101438017
Some versions of Clang seem to generate a non-working implicit copy constructor
for `RemoteRef<BuiltinTypeDescriptor>`, which results in all the reflection tests
failing. Fix by declaring it explicitly.
rdar://101240198
LLDB would like to cache typeref information to accelerate finding type
information. This patch adds an optional interface that allows of
typeref to register and provider field descriptor information for faster
lookups.
Generic params of typerefs are supposed to be "attached" on the level
they belong, not as a flat list, unlike other parts of the system. Fix
the application of bound generic params by checking how many were
already applied in the hierarchy and ignoring those already attached.
Add requirements to the Builder concept to construct generic signatures and substitution maps. Then introduce a `subst` requirement that uses the substitution map to call through to the builder's notion of type (ref) substitution.
This infrastructure is sufficient to model the notion of a RuntimeGenericSignature.
Until recently, `MemoryReader` had a single function `resovlePointer` which did two things, and has a somewhat vague name. The two things were:
1. Tool-specific mapping between real addresses and tagged addresses (first implemented in `swift-reflection-dump` and then later in lldb)
2. Finding a "symbol" for a given address
Recently, `resolvePointerAsSymbol` was added, which overloaded the term "resolve" and it added another way to deal with symbols for addresses. Symbols themselves were a bit muddled, as `swift-reflection-dump` was dealing with dynamic symbols aka bindings, while lldb was dealing in regular (static) symbols.
This change separates these two parts of functionality, and also divides symbol lookup into two cases. The API surface will now be:
1. `resolvePointer` for mapping/tagging addresses
3. `getSymbol` for looking up a symbol for an address
4. `getDynamicSymbol` for looking up a dyld binding for an address
Note: each of these names could be improved. Some alternative terms: `lookup` instead of `get`, `Binding` or `BindingName` instead of `DynamicSymbol`. Maybe even another term instead of "resolve". Suggestions welcome!
Currently, `swift-reflection-dump` supports `getDynamicSymbol` but not `getSymbol`. For lldb it's the reverse, `getSymbol` is supported but `getDynamicSymbol` needs to be implemented.
For everything but lldb, this change is NFC. For lldb it fixes a bug where `LLDBMemoryReader` returns regular symbols where we should instead be returning dynamic symbols.
Add a few includes of Optional.h and Hashing.h. These files are failing
ot build in the "next" branch due to changes in llvm's own includes, but
it's general goodness to include them on main as well.
Most of the new inspection logic is in Remote Mirror. New code in swift-inspect calls the new Remote Mirror functions and formats the resulting information for display.
Specific Remote Mirror changes:
* Add a call to check if a given metadata is an actor.
* Add calls to get information about actors and tasks.
* Add a `readObj` call to MemoryReader that combines the read and the cast, greatly simplifying code chasing pointers in the remote process.
* Add a generalized facility to the C shims that can allocate a temporary object that remains valid until at least the next call, which is used to return various temporary arrays from the new calls. Remove the existing `lastString` and `lastChunks` member variables in favor of this new facility.
Swift-inspect changes:
* Add a new dump-concurrency command.
* Add a new `ConcurrencyDumper.swift` file with the implementation. The dumper needs to do some additional work with the results from Remote Mirror to build up the task tree and this keeps it all organized.
* Extend `Inspector` to query the target's threads and fetch each thread's current task.
Concurrency runtime changes:
* Add `_swift_concurrency_debug` variables pointing to the various future adapters. Remote Mirror uses these to provide a better view of a tasks's resume pointer.
rdar://85231338
This new function allows subclasses to attempt to resolve a pointer to
a symbol before any memory is read, which can be potentially expensive
(for example, in LLDB).
In order to be able to debug, for example, a Linux process from a macOS host, we
need to be able to initialize a ReflectionContext without Objective-C
interoperability. This patch turns ObjCInterOp into another template trait, so
it's possible to instantiate a non-ObjC MetadataReader on a system built with
ObjC-interop (but not vice versa).
This patch changes the class hierarchy to
TargetMetadata<Runtime>
|
TargetHeapMetadata<Runtime>
|
TargetAnyClassMetadata<Runtime>
/ \
/ TargetAnyClassMetadataObjCInterop<Runtime>
/ \
TargetClassMetadata<Runtime, TargetAnyClassMetadata<Runtime>> \
\
TargetClassMetadata<Runtime, TargetAnyClassMetadataObjCInterop<Runtime>>
TargetAnyClassMetadataObjCInterop inherits from TargetAnyClassMetadata because
most of the implementation is the same. This choice makes TargetClassMetadata a
bit tricky. In this patch I went with templating the parent class.
rdar://87179578
We remove the existing `swift_reflection_iterateAsyncTaskAllocations` API that attempts to provide all necessary information about a tasks's allocations starting from the task. Instead, we split it into two pieces: `swift_reflection_asyncTaskSlabPointer` to get the first slab for a task, and `+swift_reflection_asyncTaskSlabAllocations` to get the allocations in a slab, and a pointer to the next slab.
We also add a dummy metadata pointer to the beginning of each slab. This allows tools to identify slab allocations on the heap without needing to locate every single async task object. They can then use `swift_reflection_asyncTaskSlabAllocations` on such allocations to find out about the contents.
rdar://82549631
We remove the existing `swift_reflection_iterateAsyncTaskAllocations` API that attempts to provide all necessary information about a tasks's allocations starting from the task. Instead, we split it into two pieces: `swift_reflection_asyncTaskSlabPointer` to get the first slab for a task, and `+swift_reflection_asyncTaskSlabAllocations` to get the allocations in a slab, and a pointer to the next slab.
We also add a dummy metadata pointer to the beginning of each slab. This allows tools to identify slab allocations on the heap without needing to locate every single async task object. They can then use `swift_reflection_asyncTaskSlabAllocations` on such allocations to find out about the contents.
rdar://82549631
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
MetadataReader can be given corrupt or garbage data and we need to be able to handle it gracefully. When reading metadata, the full size to read is calculated from partial data. When we're given bad data, these calculated sizes can be enormous, up to 4GB. Trying to read that much data can cause address space exhaustion which leads to unpleasantness.
To avoid this, fix a limit of 1MB on metadata sizes, and fail early if the size is larger. No real-world metadata should ever be that large.
We also switch these potentially large calls to use the readBytes variant that returns a unique_ptr, rather than allocating a buffer and reading into it. Our clients typically implement that as the primitive, so this avoids an unnecessary extra data copy and extra address space usage for them. Clients that implement reading into a provided buffer as the primitive should see the same performance as before.
rdar://78621784
Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
These calls can fail when passed absurd sizes, which can happen when we try to read data that's corrupt or doesn't contain what we think it should. Fail gracefully instead of crashing.
rdar://78210820
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
* Limit the recursion depth when trying to get the mangling for a context descriptor
This should help guard against corrupted data in the target app when debugging.
* Only decrement the recursion limit once for each parent visit