This allows to move many SIL APIs and utilities, which require a context, to the SIL module.
The SIL-part of SwiftPassInvocation is extracted into a base class SILContext which now lives in SIL.
Also: simplify the begin/end-pass functions of the SwiftPassInvocation.
Add a boolean parameter `salvageDebugInfo` to `Context.erase(instruction:)`.
Sometimes it needs to be turned off because the caller might require that after erasing the original instruction the operands no users anymore.
For example:
```
protocol P: AnyObject {
func foo()
}
extension P {
func foo() {}
}
class C: P {}
let e: any P = C()
```
Such default methods are SILGen'd with a generic self argument. Therefore we need to specialize such witness methods, even if the conforming type is not generic.
rdar://145855851
Store specialize witness tables in a separate lookup table in the module. This allows that for a normal conformance there can exist the original _and_ a specialized witness table.
Also, add a boolean property `isSpecialized` to `WitnessTable` which indicates whether the witness table is specialized or not.
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
* add missing APIs
* bridge the entries as values and not as pointers
* add lookup functions in `Context`
* make WitnessTable.Entry.Kind enum cases lower case
The main changes are:
*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.
*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.
*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.
*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.
*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
It notifies the pass manager that the optimization result of the current pass depends on the body (i.e. SIL instructions) of another function than the currently optimized one.
Introduce a macro that can stamp out wrapper
classes for underlying C++ pointers, and use
it to define BridgedDiagnosticEngine in
ASTBridging. Then, migrate users of
BridgedDiagEngine onto it.
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.