The generic signature isn't used for a whole lot, so this all mostly
worked before; the test case I have hits the code path for mangling
a retroactive conformance.
Fixes <https://bugs.swift.org/browse/SR-14016> / <rdar://problem/72865083>.
- `Mangle::ASTMangler::mangleAutoDiffDerivativeFunction()` and `Mangle::ASTMangler::mangleAutoDiffLinearMap()` accept original function declarations and return a mangled name for a derivative function or linear map. This is called during SILGen and TBDGen.
- `Mangle::DifferentiationMangler` handles differentiation function mangling in the differentiation transform. This part is necessary because we need to perform demangling on the original function and remangle it as part of a differentiation function mangling tree in order to get the correct substitutions in the mangled derivative generic signature.
A mangled differentiation function name includes:
- The original function.
- The differentiation function kind.
- The parameter indices for differentiation.
- The result indices for differentiation.
- The derivative generic signature.
Since these types have an implicit stored property, this requires
adding an abstraction over fields to IRGen, at least throughout
the class code. In some ways I think this significantly improves
the code, especially in how we approach missing members.
Fixes rdar://72202671.
of adding a property.
This better matches what the actual implementation expects,
and it avoids some possibilities of weird mismatches. However,
it also requires special-case initialization, destruction, and
dynamic-layout support, none of which I've added yet.
In order to get NSObject default actor subclasses to use Swift
refcounting (and thus avoid the need for the default actor runtime
to generally use ObjC refcounting), I've had to introduce a
SwiftNativeNSObject which we substitute as the superclass when
inheriting directly from NSObject. This is something we could
do in all NSObject subclasses; for now, I'm just doing it in
actors, although it's all actors and not just default actors.
We are not yet taking advantage of our special knowledge of this
class anywhere except the reference-counting code.
I went around in circles exploring a number of alternatives for
doing this; at one point I basically had a completely parallel
"ForImplementation" superclass query. That proved to be a lot
of added complexity and created more problems than it solved.
We also don't *really* get any benefit from this subclassing
because there still wouldn't be a consistent superclass for all
actors. So instead it's very ad-hoc.
We don't introduce a new mangling here.
To distinguish the names of the original asyncHandler function and it's generated "body-function", we just mangle the body-function with an async attribute, i.e. as if it was declared as async.
This change is mostly to pass information to the ASTMangler to mangle a not async function as "async".
In derivatives of loops, no longer allocate boxes for indirect case payloads. Instead, use a custom pullback context in the runtime which contains a bump-pointer allocator.
When a function contains a differentiated loop, the closure context is a `Builtin.NativeObject`, which contains a `swift::AutoDiffLinearMapContext` and a tail-allocated top-level linear map struct (which represents the linear map struct that was previously directly partial-applied into the pullback). In branching trace enums, the payloads of previously indirect cases will be allocated by `swift::AutoDiffLinearMapContext::allocate` and stored as a `Builtin.RawPointer`.
To manage code size in user binaries, we want to be able to implement common completion handler signatures in
the Swift runtime once. Using a different mangling for these lets us add new ones without clobbering symbols in
existing binaries.
Immediately before invoking the ObjC API, get the current continuation, capture it into a block to
pass as the completion handler, and then await the continuation, whose resume/error successors
serve as the semantic return/throw result of the call. This should complete the caller-side part
of SILGen; the completion handler block implementation is however still only a stub.
Instead of using `UnresolvedType` as a placeholder for a type hole,
let's switch over to a dedicated "rich" `HoleType` which is capable
of storing "originator" type - type variable or dependent member
type which couldn't be resolved.
This makes it easier for the solver to determine origins of
a hole which helps to diagnose certain problems better. It also
helps code completion to locate "expected type" of the context
even when it couldn't be completely resolved.
This is a roll-forward of https://github.com/apple/swift/pull/32950, with explicit c++17 version removed from tests. This is not needed since C++17 is the default anyway.
--
In this PR we teach `ClangImporter` to import typedef statements with template instantiation as its underlying type.
```c++
template<class T>
struct MagicWrapper {
T t;
};
struct MagicNumber {};
typedef MagicWrapper<MagicNumber> WrappedMagicNumber;
```
will be made available in Swift as if `WrappedMagicNumber` is a regular struct.
In C++, multiple distinct typedeffed instantiations resolve to the same canonical type. We implement this by creating a hidden intermediate struct that typedef aliasses.
The struct is named as `__CxxTemplateInst` plus Itanium mangled type of the instantiation. For the example above the name of the hidden struct is `__CxxTemplateInst12MagicWrapperI11MagicNumberE`. Double underscore (denoting a reserved C++ identifier) is used to discourage direct usage. We chose Itanium mangling scheme because it produces valid Swift identifiers and covers all C++ edge cases.
Imported module interface of the example above:
```swift
struct __CxxTemplateInst12MagicWrapperI11MagicNumberE {
var t: MagicNumber
}
struct MagicNumber {}
typealias WrappedMagicNumber = __CxxTemplateInst12MagicWrapperI11MagicNumberE
```
We modified the `SwiftLookupTable` logic to show hidden structs in `swift_ide_test` for convenience.
Co-authored-by: Rosica Dejanovska <rosica@google.com>
Co-authored-by: Dmitri Gribenko <gribozavr@gmail.com>
Co-authored-by: Robert Widmann <devteam.codafi@gmail.com>
In this PR we teach `ClangImporter` to import typedef statements with template instantiation as its underlying type.
```c++
template<class T>
struct MagicWrapper {
T t;
};
struct MagicNumber {};
typedef MagicWrapper<MagicNumber> WrappedMagicNumber;
```
will be made available in Swift as if `WrappedMagicNumber` is a regular struct.
In C++, multiple distinct typedeffed instantiations resolve to the same canonical type. We implement this by creating a hidden intermediate struct that typedef aliasses.
The struct is named as `__CxxTemplateInst` plus Itanium mangled type of the instantiation. For the example above the name of the hidden struct is `__CxxTemplateInst12MagicWrapperI11MagicNumberE`. Double underscore (denoting a reserved C++ identifier) is used to discourage direct usage. We chose Itanium mangling scheme because it produces valid Swift identifiers and covers all C++ edge cases.
Imported module interface of the example above:
```swift
struct __CxxTemplateInst12MagicWrapperI11MagicNumberE {
var t: MagicNumber
}
struct MagicNumber {}
typealias WrappedMagicNumber = __CxxTemplateInst12MagicWrapperI11MagicNumberE
```
We modified the `SwiftLookupTable` logic to show hidden structs in `swift_ide_test` for convenience.
Resolves https://bugs.swift.org/browse/SR-12591.
Co-authored-by: Rosica Dejanovska <rosica@google.com>
Co-authored-by: Dmitri Gribenko <gribozavr@gmail.com>
Co-authored-by: Robert Widmann <devteam.codafi@gmail.com>
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
SILType and SILDeclRef do not actually need anything from SIL/*.h. Also,
a few dependencies can be pushed out of the headers into cpp files to
speed up incremental rebuilds.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
Mangle `@noDerivative` parameters to fix type reconstruction errors.
Resolves SR-12650. The new mangling is non-breaking.
When differentiation supports multiple result indices and `@noDerivative`
results are added, we can reuse some of this mangling support.
TBD was missing several opaque type descriptor symbols. The root causes
are: (1) the AST API called by TBD doesn't return opaque type decl if
the decl is from a serialized AST; and (2) the access level of opaque
type decl isn't serialized so TBD considers them as internal.
This change fixes both.
rdar://61833970
Make sure we mangle opaque types using the same settings as the
debugger mangling (with OptimizeProtocolNames = false) to ensure
that we can reconstruct those names again.
When mangling sugared types for DWARF debug info, we would
occassionally mix generic parameter types from different
generic environments. Since the mangling for a generic
parameter type only recorded the depth and the index, even
for distinct sugared forms, the remangler would produce a
more 'compact' mangling, by folding together generic parameters
that have the same depth/index, but distinct sugarings in the
AST.
Prevent this from happening by desugaring DWARF types the
correct amount, substituting away generic parameters while
preserving everything else.
Also, re-enable the round-trip verification with the remangler.
Fixes <rdar://problem/59496022>, <https://bugs.swift.org/browse/SR-12204>.
Add mangling scheme for `@differentiable` and `@differentiable(linear)` function
types. Mangling support is important for debug information, among other things.
Update docs and add tests.
Resolves TF-948.
Generate SIL differentiability witnesses from `@differentiable` and
`@derivative` declaration attributes.
Add SILGen utilities for:
- Emiting differentiability witnesses.
- Creating derivative function thunks, which are used as entries in
differentiability witnesses.
When users register a custom derivative function, it is necessary to create a
thunk with the expected derivative type computed from the original function's
type. This is important for consistent typing and consistent differentiability
witness entry mangling.
See `SILGenModule::getOrCreateCustomDerivativeThunk` documentation for details.
Resolves TF-1138.