By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
Switch most callers to explicit indices. The exceptions lie in things that needs to manipulate the parsed output directly including the Parser and components of the ASTScope. These are included as friend class exceptions.
Make getRawValueExpr() return a checked value.
This entails a strange kind of request that effectively acts like
a cache warmer. In order to properly check the raw value expression for
a single case, we actually need all the other cases for the
autoincrementing synthesis logic. The strategy is therefore to have the
request act at the level of the parent EnumDecl and check all the values
at once. We also cache at the level of the EnumDecl so the cache
"warms" for all enum elements simultaneously.
The request also abuses TypeResolutionStage to act as an indicator for
how much information to compute. In the minimal case, we will return
a complete accounting of (auto-incremented) raw values. In the maximal
case we will also check and record types and emit diagnostics. The
minimal case is uncached to support repeated evaluation.
Note that computing the interface type of an @objc enum decl *must*
force this request. The enum's raw values are part of the ABI, and we
should not get all the way to IRGen before discovering that we cannot
possibly lay out the enum. In the future, we might want to consider
moving this check earlier or have IRGen tolerate broken cases but for
now we will maintain the status quo and not have IRGen emit
diagnostics.
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
Rework the lazy function body parsing mechanism to use the
request-evaluator, so that asking for the body of a function will
initiate parsing. Clean up a number of callers to
AbstractFunctionDecl::getBody() that don't actually need the body, so
we don't perform unnecessary parsing.
This change does not delay parsing of function bodies in the general
case; rather, it sets up the infrastructure to always delay parsing of
function bodies.
Rework the lazy function body parsing mechanism to use the
request-evaluator, so that asking for the body of a function will
initiate parsing. Clean up a number of callers to
AbstractFunctionDecl::getBody() that don't actually need the body, so
we don't perform unnecessary parsing.
This change does not delay parsing of function bodies in the general
case; rather, it sets up the infrastructure to always delay parsing of
function bodies.