There are very few times where we'd want to use @class_protocol outside of
@objc, and it feels weird to tell someone coming from Objective-C that they
need to mark their already-@objc protocol as @class_protocol. Instead, just
change ProtocolDecl::requiresClass to check for @objc.
(The commit checks for /both/ @objc-the-attribute and the IsObjC flag.
This is to give the right answer before type-checking, or at least the
likely-intended answer.)
<rdar://problem/16302887>
Swift SVN r15060
If a subclass defines no subobject initializers and all of its stored
properties have initial values, "inherit" all of the subobject
initializers of its superclass by creating a new initializer with the
same signature that overrides (and chains to) the corresponding
subobject initializer of its parent. Do this instead of blindly
creating a default initializer.
Note that we aren't yet doing this for generic initializers. That will
be a separate step.
Swift SVN r14995
To parse GenericParamList in SILParser, we try to share code with TypeChecker.
We add handleSILGenericParams in Subsystems.h in order for SILParser to call
TypeChecker's handling of GenericParamList (this is motivated by the example of
SILParser calling performTypeLocChecking). handleSILGenericParams calls
checkGenericParamList and finalizeGenericParamList.
A Builder field (ArchetypeBuilder*) is added to GenericParamList so we can add
the same-type requirements to GenericSignature in getAsCanonicalGenericSignature
by checking SameTypeRequirements of the builder.
resolvePotentialArchetypeToType is moved from a static helper function in
TypeCheckGeneric.cpp to a public helper function in ArchetypeBuilder.cpp.
When constructing the same-type requirements in getAsCanonicalGenericSignature,
we will call it to convert from PotentialArchetype to a dependent type.
rdar://16238241
Swift SVN r14922
When a subclass does not implement a designated initializer of its
superclass, introduce a stub initializer that simply traps. Such stubs
cannot be invoked directly using Swift syntax, but can be invoked
through the Objective-C runtime and from Objective-C code. Catch such
errors rather than allowing them to violate the memory safety of the
language.
Note that we're currently using cond_fail to trap; this will be
improved in the future,
Swift SVN r14839
Let ArchetypeType nested types and PotentialArchetypes be bound to concrete types in addition to archetypes. Constraints to outer context archetypes still suffer type-checker issues, but constraints to true concrete types should work now.
Swift SVN r14832
The standard library likes to have default definitions for associated types,
which is good. Often the /choice/ of default type, however, is a type that
(indirectly) conforms to the very protocol containing the associated type.
Rather than try to make sure everything is present all at once, just delay
the deserialization of the default definition until it's actually requested.
This does swell the size of AssociatedTypeDecl by two words. I've filed
<rdar://problem/16266669> to remind myself to try to reduce this.
Part of <rdar://problem/16257259>
Swift SVN r14809
the DynamicLookupExpr expression and the DeclVisibilityKind::DynamicLookup
enum. These seem right to me, more descriptive than renaming them AnyObject.
With this, I consider 13327098 to be done.
Swift SVN r14654
Make Objective-C initializers inherited according to the inheritance
rules we've specified. Prevent the Clang importer from manually
copying all of the initializers from every superclass into each
class.
This eliminates a ton of extra allocating constructors generated when
importing Objective-C init methods. Now we only generate allocating
constructors for the init methods that are actually declared.
Note that initializer inheritance only actually works for
Objective-C-defined classes. More to come.
Swift SVN r14563
Teach name lookup to find complete object initializers in its
superclass when the current class overrides all of the subobject
initializers of its direct superclass.
Clean up the implicit declaration of constructors, so we don't rely on
callers in the type checker doing the right thing.
When we refer to a constructor within the type checker, always use the
type through which the constructor was found as the result of
construction, so that we can type-check uses of inherited complete
object initializers. Fixed a problem with the creation of
OpenExistentialExprs when the base object is a metatype.
The changes to the code completion tests are an improvement: we're
generating ExprSpecific completion results when referring to the
superclass initializer with the same signature as the initializer
we're in after "super.".
Swift SVN r14551
These are the only kinds of decl that will actually have compound names in practice in the short term. Initializers can have selector pieces too, but cannot be referenced outside of a constructor call, so their AST names don't matter.
Swift SVN r14540
If an enum has no cases with payloads, make it implicitly Equatable and Hashable, and derive default implementations of '==' and 'hashValue'. Insert the derived '==' into module context wrapped in a new DerivedFileUnit kind, and arrange for it to be codegenned with the deriving EnumDecl by adding a 'DerivedOperatorDecls' array to NominalTypeDecls that gets visited at SILGen time.
Swift SVN r14471
variables
This change allows the type checker to create member references to generic
nominals with free type variables -- see tests. This is important for code
completion, for example, swift.Dictionary.#^A^#
Fixes rdar://15980316
Swift SVN r14461
These changes add support for build and target configurations in the compiler.
Build and target configurations, combined with the use of #if/#else/#endif allow
for conditional compilation within declaration and statement contexts.
Build configurations can be passed into the compiler via the new '-D' flag, or
set within the LangOptions class. Target configurations are implicit, and
currently only "os" and "arch" are supported.
Swift SVN r14305
Emit vtable entries for abstract initializers. When we're constructing
an object using an abstract initializer based on a metatype value that
is not statically derivable, use the vtable entry to call the
subclass's allocating constructor.
Most of the IRGen work here is hacking around the lossy SILDeclRef ->
(Code|Function)Ref -> SILDeclRef conversion. I'd feel bad about this
if John hadn't already agreed to clean this up at some point.
Swift SVN r14238
This is more in line with all other modules currently on our system.
If/when we get our final name for the language, we're at least now set
up to rename the library without /too/ much trouble. (This is mostly just
a lot of searching for "import swift", "swift.", "'swift'", and '"swift"'.
The compiler itself is pretty much just using STDLIB_NAME consistently now,
per r13758.)
<rdar://problem/15972383>
Swift SVN r14001
GenericSignatures with no params or requirements are a bug, so verify that they don't happen by making GenericSignature::get return null and GenericFunctionType assert that it has a nonnull signature. Hack Sema not to try to produce nongeneric GenericFunctionTypes when a function in a local type in a generic function context is type-checked; there's a deeper modeling issue that needs to be fixed here, but that's beyond the scope of 1.0. Now that GenericSignature always has at least one subtype, its factories no longer need an independent ASTContext argument.
Swift SVN r13837
For better type safety in SILFunctionTypes, which always want canonical types, and to provide a unique place to hang information common to all equivalent generic signatures, give GenericSignatures a concept of being "canonical".
Swift SVN r13794
now that they are implicitly updated. This exposes two things:
1) we're unncessarily serializing selfdecls in ctors and dtors.
2) The index pattern of a SubscriptDecl has no sensible DeclContext that
owns variables in it.
I'll deal with the first tomorrow, I'm not sure what to do with
the second one.
Swift SVN r13703
all of their generic parameters. This simplifies logic creating them,
allowing us to eliminate all setDeclContext() calls from the parser.
While we're at it, change Parser::addVarsToScope to be a static
function in ParseStmt.cpp and dramatically cut it down since none of
its remaining clients are using most of its capabilities. It needs
to be simplified even further.
Swift SVN r13702
automatically reparent VarDecls in their arg/body patterns and
GenericParameters to themselves. These all have to be created
before the actual context decl is created and then reparented,
so we might as well have the reparenting be done by the decl
itself. This lets us take out some setDeclContext reparenting
loops from around the parser.
I'm sure that there are a lot more places they can be removed
from as well.
NFC.
Swift SVN r13701
Refactor the base PolymorphicConvention implementation to work using generic signatures and dependent types instead of GenericParamLists and archetypes, using an ArchetypeBuilder to produce representative archetypes as a convenience when we need to consider all of the requirements attached to a dependent type. In EmitPolymorphicParameters, map the dependent types into context to resolve the archetypes that should be bound in the body of the function.
Swift SVN r13685
Retrieve the getter/setter selector from the underlying Clang node,
when there is one. This allows using and overriding Objective-C
properties that have custom getters and setters (i.e., for Boolean
properties where the getter is named isPropName), which narrowly
addresses <rdar://problem/15877160>.
One cannot declare a property in Swift and give it a different
selector. That would require a more general attribute such as
<rdar://problem/16019773>.
Swift SVN r13680
The need to hide Self from AllArchetypes of a GenericParamList is (almost) defined away by @cc(witness_method); IRGen now knows how to do the right thing for witnesses regardless of their generic signature. Eliminating this special case from the AST allows us to clear up a bunch of ugly hacks that piled up elsewhere to try to accommodate that special case, and makes the prospect of moving IRGen's PolymorphicConvention to interface types more manageable.
We do need an unfortunate hack to suppress emitting associated archetypes of Self when considering an archetype as the polymorphic source for a witness, since we can't actually pass those through the witness CC without breaking ABI compatibility between generic signatures.
Swift SVN r13663
All properties are considered nonatomic. If a property comes from Objective-C,
the accessor names may be customized, so always print them out in that case.
Swift SVN r13644